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1. Overview 

This paper describes the methods we used for estimating PM2.5 from global fires and the approaches used for 

evaluation. Our estimation of surface level concentrations of particulate matter of less than 2.5 µm (PM2.5) from 

landscape fires involved the following steps: (1) running atmospheric forward model aerosol simulations and 

estimating surface PM2.5 and column aerosol optical depth (AOD); (2) using satellite column AOD data to scale 

the model estimates of surface PM2.5; and (3) evaluating our approach using surface AOD, PM2.5, and visibility 

observations.  

 

2. Model simulations of surface PM2.5 and AOD 

We used a global 3-D chemical transport model (GEOS-Chem) to simulate the transport, transformation, and 

deposition of aerosol particles emitted from wildfires and other sources (Bey et al. 2001). The model was driven 

by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA 

Global Modeling and Assimilation Office (GMAO). In this study we used version v8-01-01 of the model and 

GEOS-4 meteorology with a 2° (latitude) × 2.5° (longitude) horizontal resolution and 30 vertical layers between 

the surface and 0.01 hPa.  

We performed two sets of full-chemistry (NOx-Ox-hydrocarbon-aerosol) simulations over a 10-year period 

(1997-2006). The first simulation included all emission sources of aerosols and aerosol precursors (fossil fuel, 

biofuel, biomass burning, dust, and sea salt formation). The monthly-resolved fire emissions were based on the 

Global Fire Emission Database (GFED) version 2 (van der Werf et al. 2006), which combines satellite 

observations of burned area (Giglio et al. 2006), with estimates of fuel loads obtained from a biogeochemical 

model driven by other satellite data. Different emission factors of organic carbon (OC) and black carbon (BC) 

were assumed for fires in tropical forests, savannas, and extra-tropical forests based on the mean of field studies 
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as reported in Andreae and Merlet (2001). In the second simulation, we excluded GFEDv2 emissions in order to 

separate the contribution from wildfires. 

In our model simulations, we recorded monthly mean 3-D concentrations of different aerosol species: sulfate, 

OC, BC, sea salt (accumulation mode), sea salt (coarse mode), and dust (7 size bins). We assumed lognormal 

size distributions for each aerosol species. The modal radii, geometric standard deviation, and density of 

particles, as well as their hygroscopic growth factors as a function of relative humidity (RH) were from Chin et 

al (2002). The modeled PM2.5 values for each aerosol species were calculated using monthly mean surface 

concentrations and RH-determined size distribution. Fire PM2.5 (denoted as PM25GC-fire) was the difference 

between the total PM2.5 (PM25GC) from the two simulations with and without fire emissions. We initialized the 

model by running GEOS-Chem for July-December in 1996, using all-year (1997-2006) mean monthly emissions 

from GFEDv2. The two simulations then covered the 1997-2006 period, in which the results were used to derive 

our exposure estimates. We also converted the mass concentration in each grid cell to AOD for different aerosol 

species which were assumed to be externally mixed (Tegen and Lacis 1996). We estimated monthly mean 

column AODs (at 550nm wavelength) for total aerosols (AODGC) and for fire aerosols (AODGC-fire). 

The PM2.5 concentrations from fires derived from the difference between the two simulations described above 

was our forward model estimate. Given uncertainties in BC and OC emissions and emission factors for these 

species, we also performed two optimizations of the emissions using observations of AOD from two satellites. 

Our approach for the optimization is described below. 

 

3. Using satellite column AOD data to optimize simulated surface PM2.5 

Satellite remote sensing is a reliable way to record continuous information about spatial and temporal 

distributions of global aerosols (King et al. 1999). AOD determined from satellite remote sensing has been used 

to derive ground-level PM2.5 in previous studies (e.g., Liu et al. 2004; van Donkelaar et al. 2006, 2010). By 



5 

 

taking a similar approach, here we used AOD observations from two satellite instruments to optimize our 

estimates of surface PM2.5, making scalar adjustments for 14 different continental scale regions. MODerate 

resolution Imaging Spectroradiometer (MODIS) (Remer et al. 2005) and Multi-angle Imaging 

SpectroRadiometer (MISR) (Martonchik et al. 2009), aboard the NASA Terra satellite have been retrieving 

AOD under cloud free conditions since 2001 (Chin et al. 2009b).  Monthly level 3 AOD data (collection 5 

MOD08_M3 and version 22 MISR_AM1_CGAS) at mid-visible wavelengths were downloaded from the NASA 

Goddard Space Flight Center’s Atmosphere Archive and Distribution System (http://ladsweb.nascom.nasa.gov) 

and the NASA Langley Research Center’s Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov), 

respectively. We re-gridded the original MODIS (1°×1°) and MISR (0.5°×0.5°) L3 data into the 2°×2.5° 

resolution of our atmospheric model. 

In our approach, we scaled the simulated levels of atmospheric aerosols to match satellite observations of AOD 

for the period of 2001-2006 using the forward model AOD and satellite-observed AODs (AODMODIS and 

AODMISR). Unlike previous studies that simply used a single scaling factor for all aerosols, we estimated two 

time-invariant scaling factors for fire aerosols (α) and all other aerosols (β) for the 14 different geographic 

regions of the GFED, maintaining the same seasonal and regional patterns of aerosol distributions as predicted 

by the forward model simulations described above.  This scaling approach implicitly assumed that the chemical 

composition of the fire-emitted aerosol (including the ratio of BC to OC in PM2.5) remained the same as in the 

GEOS-Chem simulation described in Supplemental Material Section 2.  

The scaling factors were derived using satellite and modeled AODs in fire-affected area, these being defined as 

the top 1/3 area with highest AODGC-fire in each region (Figure S1). For each fire-affected area, we also defined 

the four months of a mean annual cycle with lowest ratio of AODGC-fire to AODGC (averaged over 2001-2006) as 

non-fire months. Other sources often dominated the total aerosol distribution during the non-fire months and so 

we used these months to derive β. β was calculated so that the mean value of scaled AODGC (β×AODGC-

other+AODGC-fire) in the non-fire months was equal to the satellite observed AOD for the same period. Using the 

http://ladsweb.nascom.nasa.gov/
http://eosweb.larc.nasa.gov/
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derived β, we then derived α so that the adjusted AOD (α×AODGC-fire + β×AODGC-other) in the fire months (the 

four months of a mean annual cycle with highest fire contributions during 2001-2006) matched the satellite 

observations. Two sets of scaling factors α and β were estimated from MODIS and MISR observations, 

individually, and are shown in Table S1. Figure S2 shows the monthly AODs for each fire-affected area before 

and after applying the scaling factors. The derived scaling factors (α and β) for each GFED region were applied 

to modeled surface PM2.5 in all grid cells and all months to derive the satellite optimized datasets: PM25GC-sat= 

α×PM25GC-fire + β×PM25GC-other  where ‘sat’ can be either MODIS or MISR.  

Our best estimate of surface PM2.5  from LFS (PM25mean-fire) combined information from both the forward model 

and the two satellite-optimized estimates (with double weight on the model): PM25mean-fire = (2*PM25GC-

fire+PM25GC-MODIS-fire+PM25GC-MISR-fire)/4.  

 

 

 

 

 

 

 

 

 

Supplemental Material, Figure 1. Spatial locations of the 14 terrestrial GFED regions used in global fire 

emissions modeling. The warm colors (red, orange, pink) represent the fire-affected area, which is defined as 

the top 1/3 area with highest AODGC-fire in each GFED region. Satellite AODs and model results in these regions 

were used to derive scaling factors  and .  
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Supplemental Material, Table 1. Total fire emissions of the sum of organic and black carbon aerosols. The 

units of emissions (E) are Tg yr
-1

.  These emissions are averaged over 1997-2006 in each GFED
1
 region and are 

provided for the original model
2
 (EGC-fire), the estimates constrained by MODIS (EGC-MODIS-fire) or MISR (EGC-MISR-

fire), and our best estimates (EGC-mean-fire). α and β are unitless scaling factors for fire aerosols and other aerosols, 

respectively. 

 

 

Region
3
 EGC-fire 

EGC-MODIS-fire EGC-MISR-fire 
EGC-Mean-fire 

α β E α β E 

BONA 0.67 1.54 2.08 1.03 2.26 1.03 1.51 0.97 

TENA 0.25 8.35 1.00 2.07 9.21 0.86 2.28 1.21 

CEAM 0.65 6.87 2.06 4.45 5.22 2.26 3.38 2.28 

NHSA 0.40 2.48 2.91 0.98 2.70 3.22 1.07 0.71 

SHSA 3.05 3.30 1.70 10.1 1.90 2.66 5.79 5.48 

EURO 0.14 4.56 0.58 0.63 5.54 0.45 0.77 0.42 

MIDE 0.01 11.1 0.52 0.06 9.36 0.54 0.05 0.03 

NHAF 4.82 1.08 0.61 5.21 1.02 0.61 4.92 4.94 

SHAF 4.29 2.01 3.23 8.62 1.68 3.34 7.20 6.10 

BOAS 2.89 1.16 1.83 3.36 0.86 0.89 2.49 2.91 

CEAS 0.41 6.03 0.96 2.50 3.16 0.65 1.31 1.16 

SEAS 1.62 3.08 1.77 5.00 2.43 1.80 3.94 3.05 

EQAS 3.20 2.72 4.08 8.71 2.30 4.43 7.37 5.62 

AUST 1.14 2.04 1.33 2.33 3.00 1.69 3.43 2.01 

Global 23.5   55.0   45.5 36.9 

 

 

1 Global Fire Emission Database 

2 The original model refers to the atmospheric model aerosol simulations with the GEOS-Chem three dimensional chemical 

transport model. 

3See Supplemental Figure 1 for the location of each region. These regions are continental-scale regions used in fire 

emissions modeling and are defined independently of the WHO regions described in the main text. 
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Supplemental Material, Figure 2. Six year (2001-2006) mean monthly modeled AOD without (GC, vertical 

bars) and with satellite constraints (GC-MODIS and GC-MISR) for fire-affected areas in each GFED 

region (as denoted by the red, orange and pink areas in Figure S1). The satellite AOD observations for 

each fire-affect area also are shown in each panel, with MODIS AODs represented by a red line and 

MISR with a blue line. 
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4.  Evaluation  

The method of combining satellite-based AOD and GEOS-Chem simulations to derive surface PM2.5 has been 

evaluated in previous studies (e.g., van Donkelaar et al. 2010). Since the objective of this study is to quantify the 

health effects of landscape fire smoke, we focus on the evaluation of our exposure estimates in regions where 

fire is an important source of aerosols. We used (1) ground-based AOD, (2) Surface PM2.5, and (3) visibility 

observations (Holben et al. 1998; NOAA 2009).  Visibility and AOD are both directly affected by PM 

concentrations and provide our best available indication of changes in air quality from all sources in places 

where PM observations are not available.  

4.1 Evaluation using surface measurements of aerosol optical depth 

We compared the spatial and temporal variability of our AOD estimates with the observations from the Aerosol 

Robotic Network (AERONET), (Holben et al. 1998). Figure S3 shows the scatter plots of modeled AOD and 

AERONET AOD (Level 2.0 cloud-screened, quality-assured, at 500nm wavelength, version 2) in regions where 

annual mean fire AODs were greater than 0.01. The model results were sampled at the location and time of each 

observation. Figure S4 compares the best estimate of AOD with AERONET in different continental-scale GFED 

regions (Figure S1). We found in regions with significant fire emissions, the best estimate AOD, which 

combined model simulations and satellite constraints, agreed better with the AERONET observations compared 

to model-only or satellite-only estimates. Our estimated AOD showed strong positive correlation with ground 

based measurements from the AERONET network in regions with the highest amounts of fire emissions, 

including Southeast Asia (r = 0.76, n = 148), Southern Hemisphere Africa (r = 0.81, n = 119  and Northern 

Hemisphere Africa (r = 0.90, n = 74). In the other regions of the world the correlation was more variable ranging 

from 0.17 in the North American boreal zone to 0.65 in Australia (Figure S4). The mean values from our best 

estimate AOD were, on average, slightly smaller than the AERONET observations (Figure S3). 
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Supplemental Material, Figure 3. Comparison of estimated and AERONET AOD (unitless) for stations in 

regions where annual AOD from fire emissions was greater than 0.01 as simulated by GEOS-Chem. Each 

dot in (a) represents the mean AOD at a single site during the period of 1997-2006.  Each dot in (b) represents 

the all-site mean AOD in each month. The statistics of these regressions, including sample number (n), mean 

bias (d), slope (b), and linear correlation coefficient (r) are shown above each panel. 
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Supplemental Material, Figure 4. Comparison of estimated and AERONET AOD for fire-affected areas of 

each GFED region. EQAS and NHSA are omitted due to small number of stations. Each dot represents a 

monthly mean AOD at a single site during the period of 1997-2006. Circles and plus signs are for months in 

which the fire contribution to total AOD was greater than and less than 20%, respectively. 
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 4.2. Evaluation using surface PM2.5 observations 

The United States EPA Interagency Monitoring of Protected Visual Environments (IMPROVE) program (Chow 

and Watson 2002) has been measuring air quality parameters in United States since 1985 

(http://vista.cira.colostate.edu/improve/). PM2.5 values from IMPROVE after 1999 were available at the 

Visibility Information Exchange Web System (VIEWS) (http://views.cira.colostate.edu/web/).  We compared the 

monthly all-site mean and site-resolved all-year mean PM2.5 in the US from IMPROVE with model results and 

satellite-constrained model results (Figure S5). Both model estimation and satellite-constrained values agreed 

well with IMPROVE when the PM2.5 concentrations were low (<7µm/m
3
). For high aerosol concentrations, the 

model tended to underestimate the PM2.5 while the two satellite-constrained estimates tended to overestimate the 

observed values. The dataset which combined model and satellites (PM25 mean) had highest correlation with the 

IMPROVE observations and showed no significant bias. 

A major source of the uncertainty in model simulation of AOD and PM2.5 comes from the emission factors (EF) 

of aerosol species from fires.  Recently, Chin et al. (2009a) and Reid et al. (2009) used EFs for OC and BC that 

are 40%-100% larger than those derived from earlier field studies  (Andreae and Merlet 2001).  These 

adjustments appear to substantially improve model estimates of AOD and PM2.5 as compared with satellite and 

surface network observations. The EFs used in this study were at the lower end of the range in literature (Table 

S2). In addition, there is usually a gap between the PM2.5 emission factors and the sum of BC and OC emission 

factors e.g., Andreae and Merlet (2001) (see Table S2). If we used the difference between the PM2.5 EF and BC 

EF as the EF for particulate organic matter (POM) (the approach taken by Ito and Penner (Ito and Penner 2005) 

and Dentener et al. (2006), the GEOS-Chem modeled PM2.5 would have been 40% higher. By using the satellite 

observations as a constraint, the underestimation of model simulations during high fire seasons was reduced to a 

certain extent. Our best estimate (PM25mean) agreed better with satellite and AERONET observations than the 

original model simulation (Figures S2 and S3).  

http://vista.cira.colostate.edu/improve/
http://views.cira.colostate.edu/web/


13 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Material. Figure 5. Comparison of estimated PM2.5 and IMPROVE PM2.5 (in µg/m
3
) in 

regions where annual PM2.5 from fire source is greater than 1 µg/m
3
. Each dot in (a) represents the mean 

PM2.5 at a single site during the period of 1997-2006.  Each dot in (b) represents the all-site mean PM2.5 in each 

month. The statistics of these regressions, including sample number (n), mean bias (d), slope (b), and linear 

correlation coefficient (r) are shown above each panel. 
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Supplemental Material, Table 2. Global fire aerosol emissions from literature and derived in study 

averaged over 1997-2006
1
.  

Study Global emissions (Tg yr-1) Emission factors (EF, g kg-1) used in the reported study 

and related references 

Andreae and Merlet 
(2001) 

2.7 (BC) + 23.4 (OC) 
36.4 (PM2.5) 

Savanna:  0.48 (BC),3.4 (OC),5.4 (PM2.5)   

  Trop. forest:  0.66 (BC), 5.2 (OC),9.1 (PM2.5) 

Extrop. forest:  0.56 (BC), 8.6-9.7 (OC), 13.0 

(PM2.5) 

Andreae and Merlet (2001) 

Penner et al. (2001) 5-9 (BC) + 45-80 (OC) Based on a review of previous studies 

Chin et al. (2002) 11 (BC) + 77 (OC) 2 (BC), 14 (OC) 

Chin et al. (2002) 

Ito and Penner (2004) 22.1-35.3 (PM2.5) Savanna:  5.4 (PM2.5) 

Trop. forest:  9.1 (PM2.5) 

Extrop. forest:  13.0 (PM2.5) 

Andreae and Merlet (2001) 

Bond et al. (2004) 3.3 (BC) + 25.0 (OC) Savanna:  0.48 (BC), 3.4 (OC) 

Forest:  0.56-0.61 (BC), 5.2-8.0 (OC ) 

Bond et al (2004)  

Ito and Penner (2005) 3.6 (BC) + 29 (POM) Savanna:  0.48 (BC), 4.9 (POM) 

Trop. forest:  0.66 (BC), 8.4 (POM) 

Extrop. forest:  0.56 (BC,), 12.4 (POM) 

Andreae and Merlet (2001) 

Dentener et al. (2006) 3.1 (BC) + 34.7 (POM) Savanna:  0.46 (BC), 4.4 (POM) 

Trop. forest:  0.63 (BC), 8.5 (POM) 

Extrop. forest:  0.56 (BC), 12.4 (POM) 

van der Werf et al.(2006) 

Chin et al. (2009a) 5 (BC)  + 40.2 (OC) 1 (BC), 8 (OC) 

Chin et al.(2009a) 

Reid et al. (2009) 44 (PM2.5, based on GFED C 

emission) 
110 (PM2.5, based on 

FLAMBE C emission) 

Savanna:  7 (PM2.5) 

Woody savanna:  8.5 (PM2.5) 

Trop. forest :  12 (PM2.5) 

Temp. forest:  17 (PM2.5) 

Boreal forest:  16 (PM2.5) 

Reid et al. (2005) 

van der Werf et al. 

(2006)2 

2.5 (BC) + 21.0 (OC) Savanna:  0.46 (BC), 3.2 (OC) 

Trop. forest:  0.63 (BC), 5.2 (OC) 

Extrop. forest:  0.56 (BC), 9.1 (OC) 

van der Werf et al.(2006), 

Andreae and Merlet (2001)  

This study 
 (MODIS optimized) 

5.9 (BC) + 49.1 (OC)  

This study 

 (MISR optimized) 

4.8 (BC) + 40.7 (OC)  

This study 
 (best estimate) 

3.9 (BC) + 33.0 (OC)  

1
 Abbreviations are as follows: BC, black carbon; OC, organic carbon; PM2.5, particulate matter < 2.5µm in diameter;  POM, 

particulate organic matter, defined as PM2.5 component that does not belongs to BC; GFED, Global Fire Emission Database; 

FLAMBE, Fire Location and Modeling of Burning Emissions. 
2
 Also used in this study for the atmospheric model simulation with GEOS-Chem. 
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4.3. Evaluation using surface visibility observations 

Surface measurements of PM2.5 were not readily available for most tropical regions with high fire emissions.  We 

therefore compared our estimates of PM2.5 with visibility data in three regions with high fire activity: Southern 

Hemisphere South America, sub-Saharan Africa, and Southeast Asia.  Visibility data are available from the 

National Climatic Data Center Global Summary of the Day (NOAA 2009), as 24-hour averages recorded to the 

nearest 0.16 kilometers.  We followed the detailed framework presented in Husar et al. (2000), in which 

visibility is converted to the aerosol extinction coefficient (βext km
-1 

) and the data are filtered to reduce the 

impact of precipitation and observational bias on measurement quality (Husar et al. 2000). Monthly βext values 

were compared to our PM2.5 estimates. We extracted estimates from the 2x2.5 degree grid box that contained the 

station location and computed the linear correlation with the ground measurements. Any stations that were 

located within the same grid box were averaged. The median correlation coefficients were 0.57 for Africa (n=58), 

0.60 for South America (n=47), and 0.68 for Southeast Asia (n=13) (Figure S6). 

 

 

 

 

 

 

 

 

 

 

Supplemental Material. Figure 6. Correlation between visibility and PM2.5 estimates in South America 

(n=47), Equatorial Asia (n=13) and Sub-Saharan Africa (n=58). 
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5. The distribution of final estimates 

The figure below displays the outputs produced by all permutations of each plausible assumption concerning 

landscape fire smoke exposure, counterfactual exposures and concentration response associations as 

described in Table 2 of the main manuscript. N= 2,192, the median estimate was 379,000 and the inter-quartile 

range was 260,000 – 600,000. The base-case estimate of 339,000 is shown by the red dashed line. 

 

 

 
Supplemental Material, Figure 7.  Distribution of estimates of the global burden of mortality from 

landscape fire smoke 1997-2006.  
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