

		Orassii	and Site	(# 1), 60 x	00 111		
		Chis	stogalovi	ka, Oct 20	01		
		Soil	Gras	s	Litter	Total	In fuel material
³⁷ Cs	A, KBq kg ⁻¹	80±50	86±5	0	340±210	~4	
	Σ, MBq m ⁻²	29±18	0.026±0	.015 (0.26±0.17	\boldsymbol{O}	
	Total, GBq	104±70	0.094±0	.065	0.94±0.7	105±71	1.0±0.8 (1 %)
0Sr	A, KBq kg ⁻¹	21±14	120±9	0/18	2\0±150		
	Σ, MBq m ⁻²	7.6±4.7	0.041±0	.03	0.15±0.11		
	Total, GBq	27±18	(±15)	.12	0.54±0.4	28±19	0.7±0.5 (2.5 %)
³⁸ Pu	A, Bq kg ⁻¹	140±80	1.1±0	.7	960±500		
	Σ, KBq m ⁻²	50±30	(4±3) ·1	10-4	0.72±0.4		
	Total, MBq	180±110	(1.4±1.1)	·10 ⁻³	2.6±1.5	183±112	2.6±1.5 (1.4 %)
³⁹⁺²⁴⁰ Pu	A, Bokg	280±160	2.4±1	.6 2	150±1500		
•	Σ, KBq m ⁻²	100±60	(8±6) ⋅1	0-4	1.6±1.2		
	Total, MBq	360±200	(2.8±2.1)	·10 ⁻³	5.8±4.8	366±205	5.8±4.8 (1.6 %)
		Ва	ckground	I A _V , Bq m∹	3		
¹³⁷ Cs 90			⁹⁰ Sr	⁰ Sr ²³⁸ Pu		⁸⁹⁺²⁴⁰ Pu	
	2.1.10-3 0.8.10		8-10-3	10 ⁻³ 1.5·10 ⁻⁶ 2.			

			Nov	oshanali	chi, May 20	103		
		soil	timber	bark	1 st year needles	2 nd year needles	litter	fallen branche
FM,	, kg m ⁻²	-	20.5±3.5	2.6±0.4	0.6±0.1	0.30±0.05	2.15±0.28	0.11±0.03
¹³⁷ Cs	A, KBq kg ⁻¹	5.8±1.1	0.83±0.20	5.1±1.4	57±15	6.9±1.9	64±17	1.1±0.2
	Σ, KBq m ⁻²	1700±300	17±7	13 <u>±</u> 6	34±15	2.1±0.9	137±53	0.12±0.06
	total, GBq	14.9±2.6	0.15±0.06	0.12±0.05	0.30±0.13	0.018±0.008	1.2±0.5	0.0011±0.0005
90Sr	A, KBq kg ⁻¹	3.7±0.9	12.5±2.5	45.8±9.2	26,415.2	70±15	81±18	16.6±3.5
	Σ, KBq m ⁻²	1100±300	260±100	120±40)	5.8±5.8	21±8	173±62	1.8±0.9
	total, GBq	9.6±2.6	2.25±0.83	(04±0,32	0.14±0.05	0.19±0.07	1.52±0.54	0.016±0.008
²³⁸ Pu	A, Bq kg ⁻¹	33±8	0.24±0.07	J.4 <u>±</u> 2.1	0.24±0.07	0.33±0.10	130±40	0.3±0.1
	Σ, Bq m ⁻²	9800±2300	4.9±2.3	19±8	0.14±0.07	0.10±0.05	280±120	0.03±0.02
	total, MBq	86±20	0.043±0.027	0.17±0.07	0.0013±0.0008	0.0009±0.0004	2.45±1.07	0.0003±0.0002
³⁹⁺²⁴⁰ Pu	A, Bq kg ⁻¹	72±17	1.45±0.5	18±5	0.9±0.3	0.55±0.25	280±70	1.9±0.6
	Σ, Bq m	21000±5000	30±15	48±21	0.5±0.3	0.17±0.10	600±230	0.2±0.1
	total, MBq	184±44	0.26±0.13	0.42±0.18	0.0047±0.0024	0.0015±0.0009	5.3±2.0	0.0018±0.0011
			E	Backgroun	d A _V , Bq m ⁻³			
		¹³⁷ Cs		⁹⁰ Sr	²³⁸ Pu	239	⁺²⁴⁰ Pu	
3.2·10 ⁻³			4.4.10-3	8.3·10-6		2.10-5		
ICIP		Reduce Ris	k of Disaster fro		Wildfires in the Che	ernobyl Irradiated	Forests	

Calculated for	¹³⁷ Cs	⁹⁰ Sr	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu					
Grassland fire, #1									
Activity in fuel material	(1.7±0.2)·10 ⁻⁵	(1.5±0.2)·10 ⁻⁵	(3.5±1.10)·10-7	(2.4±0.6)·10 ⁻⁷					
Total activity	(1.7±0.2)·10 ⁻⁷	(3.7±0.5)·10 ⁻⁷	4.9±1.4)·10 ⁻⁹	(3.8±0.9)·10 ⁻⁹					
Grassland ire, #2									
Activity in fuel material	(8.0±4.8), 10 ⁻⁶	(4.4±2.6)·10 ⁻⁶	(2.9±2.3)·10 ⁻⁶	(2.6±2.1)·10 ⁻⁶					
Total activity	(1.941.1)-10-7	(1.8±1.5)·10 ⁻⁷	(1.3±1.0)·10 ⁻⁸	(1.3±1.0)·10 ⁻⁸					
(C)	Fore	est fire, #3							
Activity in litter	(7.0±2.8)·10 ⁻⁷	(1.2±0.5)·10 ⁻⁶	(1.2±0.8)·10 ⁻⁶	(9.4±5.2)·10 ⁻⁷					
Activity in fuel material	(4.7±2.0)·10 ⁻⁷	(3.5±1.6)·10 ⁻⁷	(1.1±0.7)·10 ⁻⁶	(8.3±4.8)·10 ⁻⁷					
Total activity	(4.7±2.0)·10 ⁻⁸	(1.1±0.5)·10 ⁻⁷	(3.2±2.2)·10 ⁻⁸	(2.5±1.6)·10 ⁻⁸					

lr	ntensity, <i>I</i> , B				m s ⁻¹ , of the		lides depos	ition.		
X, m	¹³⁷ Cs		⁹⁰ Sr		²³⁸ P	u	²³⁹⁺²⁴⁰ Pu			
	I	W _P	I	W _P	I	W _P	I	W _P		
	Grassland fire (#1)									
0	0.12±0.01	2.6±0.2	0.2±0.01	16±1	(1.4±0.3)·10 ⁻⁵	6.3±1.4	(3. 0 ±0.5) .10⁻⁵	9.5±1.2		
24	0.06±0.005	4.0±0.5	0.15±0.01	22±2	(1.2±0.2)·10 ⁻⁵	5.3±0.9	(2.5±0.3)·10 ⁻⁵	6.6±0.8		
49	0.04±0.003	5.3±0.5	0.11±0.01	57±6	(9.1±1.5)-10 ⁻⁶	(2:2±0.4	(2.0±0.2)·10 ⁻⁵	1.1±0.1		
79	0.03±0.003	3.1±0.3	0.06±0.006	21±4	(4.2±1.0).10-6	0.1±0.03	(1.0±0.1)·10 ⁻⁵	0.1±0.01		
Grassland fire (#2)										
0	0.34±0.01	35±3	0.3±0.01	60±6	(3.1±0.2)·10 ⁻⁵	12 <u>±</u> 2	(5.8±.0.3) ·10 ⁻⁵	11±1		
50	0.03±0.003	34±7	0.02±0.002	15±2	(1.7±0.2)·10 ⁻⁵	28±7	(2.6±0.2)·10 ⁻⁵	21±4		
100	0.009±0.002	13±3	0.01±0.001	9±1	(1.5±0.2)·10 ⁻⁵	17±6	(3.8±0.3)·10 ⁻⁵	26±7		
150	0.016±0.003	2216	0.006±0.001	12±3	(5.4±1.8)·10 ⁻⁶	7.0±3.5	(1.3±0.2)·10 ⁻⁵	8±3		
	Forest fire(#3)									
57	(2.0±0.3) ·10 ⁻³	2.6±0.4	(1.0±0.2) ·10 ⁻³	1.3±0.3	(3.1±0.6)-10 ⁻⁶	2.7±1.4	(9.1±2.4)·10 ⁻⁶	1.4±0.6		
102	(1.5±0.2) ·10 ⁻³	1.2±0.2	(4.6±1.8) ·10 ⁻⁴	1.0±0.4	(8.6±1.3)-10 ⁻⁶	4.2±1.7	(1.6±0.2)·10 ⁻⁵	5.2±1.8		
210	(4.1±0.4) ·10 ⁻³	2.8±0.5	(2.8±0.4) ·10 ⁻³	1.9±0.8	(1.4±0.5)·10 ⁻⁵	7.8±5.3	(3.2±1.0)·10 ⁻⁵	4.1±1.5		
294	(1.7±0.2) ·10 ⁻³	1.9±0.4	(5±2) ·10 ⁻⁴	2.7±2.3	(1.1±0.4)·10 ⁻⁶	4.7±4.5	(2.6±0.6)·10 ⁻⁶	3.1±2.1		
365	(1.3±0.2) ·10 ⁻³	0.6±0.1	(6±2) ·10 ⁻⁴	0.2±0.07	(2.6±1.1)·10 ⁻⁶	0.35±0.19	(7.7±2.2)·10 ⁻⁶	0.29±0.14		
483	(1.8±0.3) ·10 ⁻³		(5±2) ·10 ⁻⁴		(1.5±0.8)·10 ⁻⁶		(1.8±0.6)·10 ⁻⁶			
ундістр		Reduce Risk	of Disaster from Cat	astrophic Wi Kyiv 26-27J	Idfires in the Chernob uly 2007	yl Irradiated Fores	sts	UIAR		

Doses to the firefighters (conservative estimate) from 1-hr exposure in the fire
area

	Maximum airborne concentration, Bq m ⁻³ , in the site			Dose type	Dose, μSv, in the site		
	#1	#2	#3		// P#	9 #2	#3
¹³⁷ Cs	5	1	0.27	External from	6,9 10-4	1.4·10 ⁻⁴	3.7·10 ⁻⁵
			~ (Inhalation	6·10 ⁻²	1.2·10 ⁻²	3.2-10-3
⁹⁰ Sr	3	0.5	Z3)	External from the cloud	10 ⁻⁴	1.7·10 ⁻⁵	1.1·10 ⁻⁵
	12.			Inhalation	0.24	4.1·10 ⁻²	2.6·10 ⁻²
²³⁸ Pu	3.4-10-3	2.5·10-4	4.6-10-4	Inhalation	7.1	0.53	1
239+240 P	6.7·10 ⁻³	5.1·10 ⁻⁴	1.1·10 ⁻³	Inhalation	17	1.3	2.8
Ext	External irradiation from soil and veget				16	10	4.2
		Total d	ose		40	12	8

Reduce Risk of Disaster from Catastrophic Wildfires in the Chernobyl Irradiated Forest Kviv 26-27July 2007

CONCLUSIONS

- 1. For the grassland fires, RF of 137 Cs and 90 Sr $\sim 10^{-5} 10^{-6}$ m⁻¹, Pu $\sim 10^{-6} 10^{-7}$ m⁻¹ relating to the fuel material contamination. For the forest fire, RF $\sim 10^{-6} 10^{-7}$ m⁻¹ for the fuel material contamination, and $10^{-7} 10^{-8}$ m⁻¹ for the total contamination;
- 2. The increase of the radionuclides airborne concentration in the surface air layer provides a significant inhalation constituent to the doses to firefighters and other personnel of the Chernobyl zone. 50 years FED from exposure in the points of the maximum airborne concentration during the fire can exceed the external irradiation dose received during the same exposure period;
- 3. The above values are valid for the low intensity fires. Radionuclide release, initial rise of the plume and its distribution range strongly depend on the thermal intensity of the fire and its scale. For the large fires we can expect the radioactivity transportation to big distances. It can cause the significant consequences for the "clean" territories;
- 4. Unstudied problem: peat fires.

Reduce Risk of Disaster from Catastrophic Wildfires in the Chernobyl Irradiated Forests Kyiv 26-27July 2007

