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EXECUTIVE SUMMARY 

 

More than 1250 forest and grassland fires occurred during 1993-2014 in the Chernobyl Exclusion Zone. The 

largest fire in 1992 burnt 17 000 ha of highly contaminated lands and required hundreds of fire fighters for its 

suppression. Fires burning in contaminated environments create additional non-standard risks to firefighters 

and may have negative health impacts on the firefighters and on the local populations. Three main types of 

contaminated environments are found in Europe: 

� vegetation contaminated by radioactivity as a consequence of accidents occurred at nuclear 

power plants, such as the territories contaminated after the failure of Chernobyl NPP in 1986; 

� vegetation around chemical and industrial plants contaminated by regular emissions or as a 

consequence of accidents, or as collateral damage resulting from armed conflicts; 

� zones contaminated by unexploded ammunition in the region of former and current armed 

conflicts or active and abandoned military exercise and shooting ranges. 

 

The Organization for Security and Cooperation in Europe (OSCE) commissioned the Global Fire Monitoring 

Center (GFMC), the Ukrainian Institute of Agricultural Radiology and the Regional Eastern European Fire 

Monitoring Center (REEFMC) of the National University of Life and Environmental Sciences of Ukraine, and the 

Green Cross Switzerland to identify and review special fire management measures, notably means for the 

personal protection of firefighters, for safe fire suppression in the abovementioned environments. The main 

reason for this report is the fact that methods and tools for efficient and safe wildfire suppression over 

contaminated terrain are scant. While advanced protective equipment is available for the prevention and 

fighting of fires in contaminated or otherwise dangerous structures, such as nuclear and chemical facilities or 

ammunition depots, its use for controlling extended wildfires is largely limited and mostly not possible. 

However, some principles and technologies used in managing fires of hazardous materials (HAZMAT) may be 

applicable for specific conditions of wildfire management in the Chernobyl exclusion zone, especially during 

suppression of wildfires near radioactive waste storage sites. Experiences gained in controlling fires over 

terrain contaminated by unexploded ordnance and land mines could be used for firefighting over radioactively 

contaminated terrain and will allow reaching better personal safety. This report provides a review of the state-

of-the-art practices and equipment for safe wildfire suppression in contaminated areas and includes 

recommendations for improvement of radioactive safety for the firefighters. With regard to radioactive safety 

of firefighters the report includes: 

� a compilation of best practices and guidelines on fire suppression in contaminated terrain; 

� an analysis of the radioactive dose estimate during fire spread; 

� an assessment of the best practices to reduce radiation exposure during firefighting and develop 

recommendations for personal safety. 

 

It has been concluded that controlling wildfire in contaminated terrain is extremely dangerous and difficult. 

This is why investments need to be prioritized to provide the appropriate equipment and increase the 

preparedness and capabilities for safe and efficient wildfire control in order to reduce primary and secondary 

risks to firefighters and the civilian population. 

 

The following recommendations are given: 

1. Special fire management measures, personal protection means and tactics as well as appropriate 

health and environmental monitoring services should be identified, adapted and used for safe fire 

suppression in the abovementioned environments.  

2. The main risks to the health of firefighters are generated by smoke from fires burning in vegetation 

contaminated by radionuclides and chemicals. In consequence, management has to enforce the use of 
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breathing protection means, as well as define and enforce exposure time limits for firefighters based 

on radioactive and chemical risks and prevailing use of indirect attack tactics during suppression. 

3. Plans for the short- and long-term reduction of wildfire hazard and fuel management (management of 

combustible materials) are needed. A strategy should be developed for managing and treating 

gathered radioactive wood, including special incineration facilities for radioactive wood pieces with 

associated nuclear waste solidification and long-term storage capacities. Without such long term 

strategy, it will be difficult to manage forests and reduce fire risks by removing dead wood. 

4. Fire service personnel in areas with nuclear or chemical contamination hazards should be properly 

trained and equipped to fight fires and understand these non-standard risks. A decision support 

system for fire suppression and air monitoring systems would allow the incident commander to 

control exposure time of firefighters at the fire line from the point of view of compliance with 

individual radioactive and chemical safety norms. 

5. Firefighting in terrain contaminated by unexploded ordnance (UXO) and landmines require different 

means of PPE and equipment that ensures personnel protection against ballistic impacts of exploding 

ammunition. Several options are provided. 

6. For all types of contaminated terrain the early detection, monitoring and control of fires require 

advanced solutions that would reduce the onsite operation and presence of humans. Remote sensing 

for the early detection of fires (ground-based automated and autonomously operating equipment for 

the rapid detection of vegetation fire smoke or heat) and unmanned, remotely controlled or 

autonomously operating ground vehicles or airborne systems (UAV/UAS) provide significant reduction 

of health risks, injuries or fatalities to firefighters. The most advanced solutions for unmanned aerial 

and ground firefighting merit attention for use in practice. 
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1. INTRODUCTION 

 

1.1 Special features of the Chernobyl Exclusion Zone from the viewpoint of risks of 

vegetation fires 1
 

High intensity, wide scale and diversity of modern anthropogenic activities and land use have seriously 

changed the fire environment by different kinds of contamination that pose additional, unprecedented risk 

factors to firefighters suppressing vegetation fires. From the viewpoint of vegetation fire management in the 

Chernobyl Exclusion Zone (ChEZ) three main cases of contamination should be taken into account for 

improving personal safety: radioactive, chemical and explosives. In all abovementioned cases different factors 

pose risks to the health of firefighters that need to be taken into account for proper training and preparedness 

of fire brigades, selection of personal protection means and decision making on strategies and tactics of fire 

suppression that will prioritize and guarantee personal safety. 

 

Nuclear incidents with high environment contamination have a very significant impact on the fire 

environment. Since the 1950s, three major nuclear incidents have led to wide-scale radioactive contamination 

of the environment: releases from the Mayak Production Association in the region of Chelyabinsk (Southern 

Ural Mountains), Russia (Trabalka et al., 1980); the Chernobyl Nuclear Power Plant (ChNPP), USSR (1986); and 

the Fukushima NPP (2011) (Steinhauser et al., 2014). In the last two cases, exclusion zones were established 

for the most contaminated areas around the damaged reactors. The Chernobyl disaster case is the most 

dangerous and problematic one from the viewpoint of fire management due to the large scale, high levels and 

long-term nature of contamination. Most of the contaminated areas covered with fire prone Scotch pine 

forests and grasses are located on the territories of Ukraine, Belarus and Russia. The rapid growth of numbers 

of newly constructed nuclear energy facilities, particularly in the Asia-Pacific Area, leads to an increasing 

probability of accidents in the future and therefore calls for better documentation of available experience of 

the management of existing radioactive contaminated territories.  

 

Current fire regime and risks in the Chernobyl Exclusion Zone (ChEZ) are determined by ignition sources, 

vegetation types, their distribution and dynamics, as well as intensity and aspects of forest and fire 

management. Recently, climate change became another important factor that does not allow the prediction 

of maximums severity and consequences of fires. Additional factors that need to be taken into account during 

suppression are intensity of radioactive and chemical contamination of soil, vegetation and debris that 

determine level of smoke contamination and impact on personal safety.  

 

A special permission regime was established after the disaster of 1986 delimiting the most contaminated 10-

km zone as well as 30-km zone around the ChEZ. Later the EZ was extended toward the west side and 

currently covers an area of 260,000 ha. At the moment around 60-70 % of the EZ is fenced while the rest is 

freely accessible, thus creating favorable conditions for illegal crossing of vehicles or visitors into the EZ 

territory. To avoid illegal penetration of visitors, the police regularly patrols the perimeter, which is still not 

very effective in keeping the exclusion regime. More than 1250 vegetation fires of different types, severity and 

scale were registered officially in ChEZ from 1993 to 2014. The most severe fires occurred in August 1992 

when up to 17,000 ha of grass and forest fires (including crown fire with an area of more than 5,000 ha) 

burned all over the territory of the ChEZ including the most contaminated core part (Fig. 1). 
 

                                                      
1
 Author: S. Zibtsev 



 

6 

 

 
 

Figure 1. Fire locations and land distribution of the ChEZ according to Ukrainian fire hazard classes 

 

Satellite images in May 2003 show numerous forest fires in the ChEZ and surrounding territories with different 

contamination levels, which brought radioactive smoke toward the city of Kyiv (Fig. 2). The vegetation in the 

ChEZ is a mosaic of forested (65 %) and grass lands that is fire-prone during all seasons with the maximum fire 

hazard being in April-May and in August (Fig. 3).  
 

 
 

Figure 2. Fires burning in and around the ChEZ over lands with different levels of contamination as well as smoke plume 

toward Kyiv 
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Figure 3. Typical fire prone vegetation types in the ChEZ: pine forests and grasslands with developing natural 

regeneration of trees. Nuclear facilities are located in the forested territories 

 

Due to the absence of any use of lands in the ChEZ, dynamics of most vegetation types follows typical 

succession pathways that lead to intensive fuel accumulation. Large areas of middle-aged pure pine 

plantations are destroyed by diseases and insects and then remain overcrowded with high loads of surface 

fuels due to the absence of thinning (Fig. 4). In many cases, this has resulted in the formation of a new 

generation of forests that are more fire prone due to larger continuous unthinned areas of vertical fuels as 

compared with previous stand generations (Fig. 5). 

 

The lack of thinning in the ChEZ (less than 10 % of the required levels) determines overcrowding of pine 

forests all over the territory and increases the risks of high-intensity fires, crown fires and large wildfires. 

Existing fire management capacity, structure and location do not correspond to this high fire hazard and will 

not guarantee fast response and effective suppression in case of critical weather conditions. For example, one 

fire station with 2-3 fire trucks and up to 5-7 firefighters holds responsibility for an area of more than 

65,000 ha, while outside the ChEZ, the area of responsibility value is 15-20 times less  

(3-5,000 ha). Only around 70 % of the area is covered by a fire detection system (lookout towers with 

observers). Nearly 23,000 ha of fire prone forests in the ChEZ is not accessible to fire trucks or fire brigades at 

all. All of the abovementioned factors determine high risks for the personal safety of firefighters, which 

requires special attention to their Personal Protection Equipment (PPE), the use of special equipment and also 

the strategy and tactics of firefighting. 
 

 
 

 
 

Figure 4. Pine forests (55 years old) destroyed by 

insects resulting in high surface fuel load (Leliv 

Forest Ranger District, 10-km Zone) 

Figure 5. Fire prone complex of vertical, well-

structured pine forests damaged by snowfall 

with natural regeneration of pine 
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2.1 Challenges for policy makers2 

 

There are only a few countries in the world that have a systematic approach in place to address the problem 

of the consequences of wildfire burning on terrain contaminated by radionuclides, chemicals and weapons – 

be it relevant policies or technologies. This is why an international dialogue on “Dangerous Fires on 

Contaminated Terrain” was initiated in 2009. An international seminar made history by addressing the 

problem of “Wildfires and Human Security: Fire Management on Terrain Contaminated by Radioactivity, 

Unexploded Ordnance (UXO) and Land Mines” (October 2009, in Kyiv and Chernobyl, Ukraine). It provided 

new insights into phenomena and problems arising from fires burning in radioactively contaminated terrain in 

the Eurasia biota. The most severe problems are in the territories of Ukraine, Russia, and Belarus, which were 

highly contaminated by the failure of Reactor 4 of the Chernobyl Nuclear Power Plant. Traces of radioactivity 

from Chernobyl are found in emissions from wildfires burning in Siberia and Central Asia and are transported 

long-range and intercontinentally. Wildfire incidents in the U.S.A. have threatened nuclear test facilities but so 

far have not resulted in severe contamination.  

 

Reports from post-war countries revealed the magnitude of unexploded ammunition and land mine 

contamination in forested and other lands. Reports on fires burning in former military exercise and shooting 

ranges reveal that unexploded ordnance is potentially very dangerous and has repeatedly resulted in 

firefighter casualties. 

 

The seminar called on its host – the government of Ukraine – and the auspices of the seminar, the Global Fire 

Monitoring Center (GFMC), the Council of Europe (CoE), OSCE / ENVSEC, the UNISDR Regional Southeast 

Europe / Caucasus and Central Asia Wildland Fire Networks, and the UNECE / FAO Team of Specialists on 

Forest Fire to address the problems. The 2009 “Chernobyl Resolution on Wildfires and Human Security: 

Challenges and Priorities for Action to address Problems of Wildfires burning on Terrain Contaminated by 

Radioactivity, Unexploded Ordnance (UXO) and Land Mines“ recommended to develop policies and practices 

related to fire management on contaminated terrain.
 3 

Since then, decisive steps have been taken to explore 

methods and technologies to deal with fires on contaminated terrain.  

                                                      
2
 Author: Dr. Goldammer  

3
 See summary of seminar contributions and the Chernobyl Resolution published in UNECE / FAO International 

Forest Fire News (IFFN) No. 40 (2010), pp. 76-113. (http://www.fire.uni-freiburg.de/iffn/iffn_40/content40.htm) 
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2. DANGEROUS FACTORS FOR FIREFIGHTERS SUPPRESSING VEGETATION FIRES 
OVER CONTAMINATED TERRAIN AND POTENTIALLY NEGATIVE HEALTH EFFECTS 

2.1 Heat 
4
 

Heat is one of the main threats to firefighter’s health during fire suppression. A large number of studies were 

performed to study physiological responses of the body to continuous exposure to heat of different intensity 

levels (Adolph, 1947; Cuddy et al. 2008; Hendrie et al., 1997; Ruby et al., 2003; Sharkey, 2004). The highest 

threat of heat impact on a firefighter starts when the ratio between heat gain and heat loss is out of balance. 

As a result, a number of serious injuries and illnesses can occur, in particular heat cramps, heat exhaustion and 

heat stroke. Symptoms and factors of the above-mentioned heat induced injuries were described by 

Domitrovich and Sharkey (2010). 

 

Heat cramps take place both during and after suppression in the arms and legs. The main cause is dehydration 

and electrolyte imbalance. Dehydration, sweating, muscle cramps, and fatigue are observed. In such case, the 

firefighter should be suspended from activities. For recovery it is recommended to: rest in the shade to rule 

out muscle injury, stretch and massage the affected muscles, check the amount of water the firefighter has 

consumed. In case of dehydration, unhurried consumption of sports drinks with electrolytes and 

carbohydrates and/or salty foods is also recommended. In most cases, affected firefighters will be able to 

return to work during the shift after they are properly hydrated and have had some rest. 

 

When the cardiovascular system is unable to maintain adequate blood and water circulation, heat exhaustion 

is usually observed. Usually a firefighter is not feeling strong enough to fight the fire around the fire line. From 

a physiological point of view, heat impact stimulates sweating, followed by depletion of water and electrolytes 

and a decrease in total blood volume. As a result, this radically reduces the ability of the blood to transport 

oxygen and nutrients to the muscles. Symptoms are more serious and include dehydration, headache, profuse 

sweating, lightheadedness or dizziness, nausea, cool, clammy skin, fatigue or weakness. Actions needed to 

recover include the following: withdrawing the firefighter from the fire line, resting in the shade, removing the 

firefighter’s clothing, laying down and elevating the firefighter’s legs. Heart rate, blood pressure, respiratory 

rate and level of alertness must be monitored. If the firefighter can safely swallow and is not vomiting – slowly 

give fluids. Most firefighters with mild heat exhaustion will recover with no need for accommodation in a 

health care facility if they stop working, but they should return to work not earlier than in 24-48 hours. 

Firefighters with severe heat exhaustion should be seen by a physician. 

 

Heat stroke can have much more serious effects. It is characterized by the loss of the body’s ability to use its 

temperature regulating system. Heat stroke is life threatening. As a result of heat stroke, body temperature 

increases above 40°C. Heat stroke impacts cell functions and results in the release of cytokines that break 

cellular communication, causing local or whole body inflammation. Among the typical symptoms observed are 

irrational behavior, loss of alertness, weakness, hot, wet or dry skin, tachycardia with rates higher than 100 

while resting. The blood pressure decreases while hyperventilation increases. Immediate actions must include: 

suspending the firefighter from work, placing the firefighter in the shade, removing the firefighter’s clothing, 

immersing the firefighter in water (in a stream or water tank).  The firefighter should be immediately 

evacuated from the fire line, assuming it can be done safely. Returning to work, at the earliest, may take place 

after one week following doctor examination and rehabilitation. 

 

Summarizing the abovementioned, it needs to be underlined that when fighting a fire in a contaminated 

environment, heat, most of the time, is a minor factor affecting the health of firefighters compared to 

contaminated smoke directly affecting respiratory organs (radioactive, chemical) or explosives directly 

                                                      
4
 Author: S. Zibtsev 
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affecting physical life. Therefore, firefighters need to be aware and trained to avoid heat stress but most 

attention needs to be directed toward smoke, radiation and explosion protection. 

 

2.2 Chemical elements 
5
 

There are a number of extended researches devoted to the issue of contamination of vegetation fire smoke 

(VFS) by different chemical elements and gases (Kelly, 1992; Reh and Deitchman, 1992; Lacaux, 1995, Ward, 

1999; McDonald et al., 2000; Muraleedharan et al., 2000; Heil and Goldammer, 2001; Shauer et al., 2001; 

Ward and Smith, 2001; Radojevic, 2003; Booze et al., 2004; Miranda, 2004; Reinhardt and Ottmar, 2004; 

Koppmann et al., 2005; Statheropoulos and Karma, 2007; Bytnerowicz et al., 2009; Goldammer et al., 2009). 

 

According to recent studies, vegetation fire smoke includes many elements and their compositions. Among 

them, most importantly, are water vapor, permanent gases, volatile organic compounds (VOCs), semi-volatile 

organic compounds (SVOCs) and different particles. Permanent gases are CO2, CO, NOx, SOx and NH3. Due to 

usually low sulfur concentration, SOx is a relatively low health risk. But at  the same time if vegetation grows 

on soils with a high content of chemically available sulfur (both naturally occurring [volcanic] or artificial 

[contaminated land near coal burning power plants and other industrial complexes]) high amounts of sulfur-

based compounds are released. For example, considerable concentrations of SO2 and H2S were produced 

during fires burning in Yellowstone National Park. NH3 has been detected in Savannah fires. The emission ratio 

of NH3 relative to CO2 has been identified and found to be at low levels; NH3 is mostly emitted during the 

smoldering and not during the flaming phase of combustion. 

 

Methane and various VOCs are actively formed during fires. In particular, such chemicals as alkanes, alkenes 

and alkynes were identified, which temporary appeared during formation of ethane, heptane, decane, 

propene, acetylene and other gases. More dangerous to health are benzene and alkylbenzenes, in particular 

toluene, xylene and ethyl-benzene. The interaction of abovementioned chemicals with oxygen during burning 

processes results in the generation of phenol, m-cresol, p-cresol, guaiacol, aldehydes (formaldehyde, 

acetaldehyde, benzaldehyde), ketones including acetone, acetic acid, benzoic acid, methyl ester, etc. In 

addition, during fires in pine forests, chloromethane was detected in the produced smoke. Chloromethane has 

been identified as the most abundant halogenated hydrocarbon emitted during biomass burning, mainly 

consisting of dead and living vegetation. Among the SVOC groups, generated by vegetation fires with high 

amount of smoke, the most dangerous for health is benzo[a]pyrene. 

 

If a fire occurs on soils with considerable salt contents, the thermal separation of the chlorine atom from the 

salt molecule (NaCl) will lead during the cooling process to the formation of dioxins, one of the strongest 

known cancer-causing substances.  

 

During burning vegetation fires, large amounts of particles with different sizes are created. The impact of 

particles very much depends on their size. Depending on the fire intensity and vegetation type, particle sizes 

can vary from coarse (>PM10) to fine (PM2.5, PM1, >PM1).
6
 From a chemical point of view, particles consist of 

carbon or organic carbon particles. The latter one, known as black carbon (soot), is a product of the 

incomplete combustion of carbon-based materials and fuels (CEPA, 1999). Recently, the long distance impact 

on Arctic ice by black carbon was studied. The health impact of smoke largely depends on fire temperature. 

                                                      
5
 Author: S. Zibtsev 

6
 Particulate matter (PM) or particulates is microscopic solid or liquid matter suspended in the atmosphere. Subtypes of 

atmospheric particle matter include suspended particulate matter (SPM), respirable suspended particle (RSP; particles 

with diameter of 10 micrometers [µm] or less), fine particles (diameter of 2.5 µm or less), ultrafine particles (less than 

100 nanometers [nm, or 0.1 µm] in diameter) and soot (impure carbon particles resulting from the incomplete 

combustion of a hydrocarbon). 
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During combustion processes hot vapors are produced. The latter interact with chemicals in the air, thereby 

forming new particles, usually below 0.1 µm in diameter which are especially dangerous to the lungs. Low-

volatility products including some radionuclides either nucleate or condense on the surfaces of particles, 

yielding particles in the size range of 0.1-1.0 μm, which pose additional threats. Most  trace elements, both of 

natural or anthropogenic origin, migrate with particles during vegetation fires, such as Na, Mg, AL Si, P, S. CI, K, 

Ca, Ti, Mn, Fe, Zn, Rb, Sr, V, Pb, Cu, Ni, Br, Cr and others. These elements usually concentrate in fine fraction 

and therefore easily reach the lungs and the blood system of firefighters. 

 

During vegetation fires inside the 5-6 km zone around chemical industrial plants (fertilizer production and 

others) more complicated mixtures may be formed depending on the fire intensity. In case of crown fires 

followed by high temperature, most smoke rises up to the upper layers of the atmosphere and the level of 

chemical impact on firefighters is lower. In contrast, during ground fires of low intensity, most of the smoke 

stays near the ground thus exposing firefighters, especially from the side of the flame-front expansion. Other 

types of fuels and/or materials may contribute to chemical loads in the smoke, when for example, vegetation 

fire is expanding to former agriculture fields, nuclear infrastructure and waste storage places. Other waste 

materials buried in forests like wood, plastics, fertilizers may burn, and materials, such as pulverized glass, 

cement dust, asbestos or plaster and other chemical compounds may appear in the produced smoke. This 

requires taking into account spatial distribution of chemical contamination when tactics of firefighting are 

developed and applied. 

2.3 Smoke 
7
 

According to the definition, vegetation fire smoke (VFS) is an aerosol in the form of a colloidal system 

composed from a mixture of dispersed phase and solid or liquid particles in the air (Johnson, 1999). The threat 

level posed by smoke to firefighter health depends on many factors and their combination. First of all, it is the 

chemical toxicity itself, followed by the intensity of burning and level, duration and frequency of the exposure. 

The heaviest impact on the firefighters is taking place during the front flame attack. Extended analysis and 

overview of the main dangerous factors from smoke is provided in a number of publications (Malilay, 1998; 

Heil and Goldammer, 2001; Radojevic, 2003; Bytnerowicz et al., 2009; Goldammer et al., 2009). Some 

background information about the main smoke causes is presented below that should be taken into account 

when organizing the suppression of vegetation fires and most importantly on terrain with chemical 

contamination. 

 

Particles in smoke are one of the main factors impacting the breathing apparatus and require Personal 

Protection Equipment (PPE). The solid components of smoke with respirable size particles easily migrate inside 

the body with the breathing air. As was mentioned above, particles are differentiated into two categories: fine 

particles with an average diameter of 0.3 micrometers (μm) and coarse particles with an average diameter 

larger than 10 μm. Even at low concentrations, fine particles may cause changes in lung functions that in the 

long term can lead to a higher possibility of development of respiratory and cardiovascular illnesses including 

asthma. Fine particles usually affect alveoli and concentrate there. Under the conditions when the lungs are 

not sufficiently cleared naturally, high pollutant concentrations may enter the bloodstream or remain in the 

lungs, resulting in chronic lung diseases such as emphysema. As it was mentioned earlier, chemicals absorbed 

by airborne particulates contain numerous toxic elements which have considerable carcinogenic effects. 

 

The impact of smoke on health directly depends on the size and type of the vegetation fire. According  to the 

assessments, particles during the fire are produced very intensively – at least 0.6 tons per second and higher 

rates, and thus, the health impact depends on the intensity of the fire and the wind direction. 40 to 70 % of 

fine particles consist of organic carbon material, containing known carcinogens. 2-5 % is graphitic carbon; 

the remainder is inorganic ash. Particles carry absorbed and condensed toxicants and free radicals, for 

                                                      
7
 Author: S. Zibtsev 
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example, polycyclic aromatic hydrocarbons (PAH). Their health effects are determined by their chemical 

composition, consisting of a group of organic compounds with two or more benzene rings, such as methyl 

anthracene, pyrene, chrysene, benzo[a]anthracene, fluroranthene, and methylchrysene. Benzo[a]pyrene is 

considered the most carcinogenic compound. Low intensity backing fires (upwind direction) are found to 

produce larger amounts of benzo[a]pyrene than heading fires, which move into new fuel in the same direction 

as the wind movement. This fact essentially decreases the possible tactics of suppression and requires to 

minimize the amount of time the firefighters are exposed to smoke even in cases when backfires are used. 

Fuel characteristics also affect the production of PAHs during combustion. The emission of benzo[a]pyrene 

increases as the density of live vegetation covering the fire area thickens. The emission rates for PAHs were 

observed to be highest for temperatures in the range of 500-800°C, and were consistent with the results 

from a study of PAHs released in low intensity backing fires. 

 

Carbon monoxide (CO) is the main cause of fatalities during vegetation fires. It is related both to firefighters 

and civil population that are sometimes trapped by the fire. The mechanism of health impact by carbon 

monoxide gas is related to tissue hypoxia preventing the blood from carrying sufficient oxygen. The threat 

level depends on the concentration. Low and medium concentrations result in impaired thinking, headaches, 

slow reflexes, reduced manual dexterity, decreased exercise capacity, and drowsiness. High concentrations 

may cause fatality. Carbon monoxide concentration closely correlates with concentration of other compounds 

in the smoke, including particles and formaldehyde. In most cases, CO concentrations depend on fire intensity 

and range from 60 g/kg in low intensity fires to more than 300 g/kg of fuel consumed during high intensity 

fires. Among the important factors that determine the intensity of emission is the type of vegetation and 

moisture content. In every country there is an official health risk threshold. In Ukraine, if the duration of 

exposure is less than 1 hour, the limit is 50 mg/m
3
, less than 30 minutes – 100 mg/m

3
, and less than 15 

minutes – less than 200 mg/m
3
. 

 

Aldehydes that rise into the atmosphere during the fire are primarily irritating the mucous membrane. Most 

dangerous is formaldehyde, which may be carcinogenic in combination with other chemicals such as PAHs. 

Formaldehyde and acrolein are the main aldehydes released during vegetation burning. Formaldehyde, which 

is probably the most abundantly produced chemical compound of this class, causes eye, nose, and throat 

irritation during smoke exposure. It is highly likely that acrolein is an irritant in smoke near fire lines, with 

concentrations as high as 0.1 ppm to 10 ppm near fires. 

 

During the active phase of vegetation fire, organic acids are formed as a result of formaldehyde oxidation. 

Health effects mostly include irritation of mucous membranes. Using water for suppression, or under 

conditions of high humidity, can stimulate production of such organic acids as formic acid, acetic acid and 

others. 

 

SVOCs and VOCs cause skin and eye irritation, drowsiness, coughing and wheezing. Most dangerous are 

benzene, benzo[a]pyrene, 1.3-butadiene as they are genetoxic carcinogens and their impact may have long 

term carcinogenic effects on firefighter health.  

 

One of the most important chemical processes that impacts health is free radicals that intensively form during 

vegetation fires. Free radicals, firstly, migrate to human tissues within 20 minutes after burning and pose a 

problem for firefighters exposed to freshly formed aerosols. 

 

While fuel is combusting during vegetation fires, ozone is an extremely reactive oxidant that forms in the 

breathing zone near the fire line. In case of the ozone concentration exceeding the allowable threshold, it 

negatively impacts lung functions, essentially reducing the resistance to infectious diseases. Firefighters 

with chronic respiratory illnesses should not be called to fight fires in this case. Several hours of intensive 

physical activity at the fire line, even in case of only low concentration of ozone, has negative effects: as ozone 
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is accumulated in tissues, the respiratory rate increases. In this case, ozone causes such symptoms as 

coughing, shortness of breath, excess sputum, throat tickle, raspy throat, nausea, and impaired lung function. 

In the long-term, perspective impact of ozone on health may consist of suppressed lung functions and chronic 

obstructive pulmonary disease. The highest threat of ozone impact is related to grass fires with low flame 

length under the condition of sunlight and when smoke is concentrated in valleys or in places with a 

temperature inversion. 

 

Inorganic elements may cause certain effects on health. Surface fuel on the territories near big cities or around 

industrial plants is usually contaminated by heavy metals, in particular lead, asbestos, and sulfur. The health 

impact of inorganic elements is usually low, as they are present in trace concentrations in fuel and smoke 

particles, but at the same time it largely depends on the chemistry of fuels burned and the intensity of the 

vegetation fire. As most of the roofing in rural areas of Ukraine is done using asbestos, this compound is 

widely distributed in surface fuel and in the air around settlements. During vegetation fires, asbestos fibers are 

carried with the smoke and produce a secondary contamination of the environment. Of other trace elements, 

potassium is registered in relatively high concentrations primarily in cases when branches are burning in the 

wood. The migration of the most part of these elements into the breathing pathways of firefighters in most 

cases can be reduced essentially by using proper PPE, first of all, special face masks or respirators. 

2.4 Radiation
8
 

Radioactivity is a natural phenomenon and natural sources of radiation are features of the environment. 

Radiation and radioactive material may also be of artificial origin after nuclear and radiological accidents. 

Three main types of radiation after contamination of environment, each with different properties and health 

pathways and impacts, exist:  

� alpha (α) particles: is a particle radiation consisting of helium nuclei. Alpha particles have a low 

penetration depth and can be stopped by a few centimeters of air or by the skin. They are a major 

health risk if inhaled or ingested, because large exposures can result in nearby tissues, such as the 

lining of the lung or stomach. 

� beta (β) particles: is a particle radiation consisting of high energy electrons. They have a medium 

penetration depth, shielding materials with low atomic numbers are more efficient for stopping them 

(plastic, glass, or metal). Such emitter does not normally penetrate beyond the top layer of skin. 

However large exposures to high-energy beta emitters can cause skin burns. Beta particles are a major 

health risk if inhaled or ingested. 

� gamma (γ) rays: is very high energy electromagnetic radiation with a high penetration depth, reuiring 

potentially massive shielding (e.g. lead). Gamma rays pose mainly a risk of external irradiation to 

internal organs without inhalation or ingestion.  

 

Radiation doses of different sizes, delivered at different rates to different parts of the body, can cause 

different types of health effect at different times. The amount of energy that ionizing radiation deposits in a 

unit mass of matter, such as human tissue, is called the absorbed dose. It is expressed in a unit called the gray, 

symbol Gy (1 Gy=1 joule per kilogram, 1 mGy=0.001 Gy). 1 Gy to tissue from α-radiation is more harmful than 

1 Gy from β- or γ-radiation, because an α-particle, being slower and more heavily charged, loses its energy 

much more densely along its path. The equivalent dose is equal to the absorbed dose multiplied by a factor   

that takes into account the relative effectiveness to cause biological harm of different radiation types. This 

radiation-weighting factor is 1 for β- or γ-radiation and 20 - for α-radiation. The equivalent dose is exp 

equivalent ressed in a unit called the Sievert, symbol Sv (1 Sv=1000 mSv= 1000000 µSv). For example, the 

average effective dose rate from all natural sources of radiation (background level) is 0.1-0.3 µSv per hour. 

Such levels of equivalent dose rate observed in Europe and in most parts of Chernobyl exclusion zone, 

including the Chernobyl town. Now the maximum values of equivalent dose rate are on the most 
                                                      
8
 Authors: St. Robinson (health risks) and V. Kashparov (internal and external doses) 
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contaminated areas (up to 100 µSv per hour) near ChNPP. Effects of exposure of different human organs can 

be very different, for example, due to the different distribution of radionuclide in the body. The sum of 

weighted equivalent doses (the equivalent dose in each of the major tissues and organs of the body multiplied 

by a weighting factor related to the risk associated with tissue or organ) is a quantity called the effective dose: 

it allows us to represent the various dose equivalents in the body as a single number. The effective dose also 

takes account of the energy and type of radiation, and therefore gives a broad indication of the detriment to 

health. Moreover, it applies equally to external and internal exposure and to uniform or non-uniform 

irradiation. The effective dose unit also is the Sievert, symbol Sv (1 Sv=1000 mSv=1 000 000 µSv). For example, 

the effective dose from all natural sources of radiation is, on average, 2.4 mSv in a year. 

 

Radiation can destroy molecules in the body, thereby disturbing the proper functioning of its metabolism. It 

can also generate DNA modifications, which can potentially have long-term consequences. The two types of 

radiation impacts are distinguished:  

� short-term consequences: appear only above a threshold equivalent dose. The damage is in the 

function of the absorbed radiation dose. This can include (in growing order of severity) headaches, 

increased risks of infections, lack of appetite, fatigue, loss of hair, sterility, diarrhea, collapse of body 

functions, death. These types of effect are called deterministic effects; 

� long-term consequences: may appear years after absorbing a small effective dose. According to the 

existing knowledge, there is no threshold dose. The changes in DNA can lead to cancer or genetic 

anomalies. These types of effect are called stochastic effects. The ‘detriment-adjusted nominal risk 

coefficient of dose’, which includes the risks of all cancers and hereditary effects, is 5% per sievert (Sv). 

 

The radiation risks to people and the environment must be assessed and controlled through the application of 

standards of safety (International Basic Safety Standards -BSS) by means of dose limits for planned exposure 

situations to ensure: 

� preventing the occurrence of deterministic effects in individuals exposed to radiation; 

� restriction on the acceptable level of probability of occurrence of stochastic effects. 

 

For occupational exposure of workers over the age of 18 years, the dose limits are: 

� an effective dose of 20 mSv per year averaged over five consecutive years (100 mSv in 5 years), and of 

50 mSv in any single year; 

� an equivalent dose to the lens of the eye of 20 mSv per year averaged over 5 consecutive years (100 

mSv in 5 years) and of 50 mSv in any single year; 

� an equivalent dose to the extremities (hands and feet) or the skin of 500 mSv in a year. 

 

There are additional restrictions apply to occupational exposure for a female worker who has notified 

pregnancy or is breast-feeding. 

 

For public exposure, the dose limits are: 

� an effective dose of 1 mSv in a year; 

� in special circumstances, a higher value of effective dose in a single year could apply, provided that the 

average effective dose over five consecutive years does not exceed 1 mSv per year; 

� an equivalent dose to the lens of the eye of 15 mSv in a year; 

� an equivalent dose to the skin of 50 mSv in a year. 

 

The effective dose limits apply to the sum of the relevant doses from external exposure in the specified period 

and the relevant committed doses from intakes in the same period.  

 

Different radionuclides are especially relevant from a health perspective. In the ChEZ, radiation levels are 

dominated by radiocesium (
137

Cs) and radiostrontium (
90

Sr), which are both beta-emitters, barium (
137m 

Ba), a 
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gamma-emitter, and plutonium (
238,239,240

Pu) with americium (
241

Am), which are alpha-emitters. External dose 

rate depends on the density of contamination territory with 
137

Cs. The airborne radionuclide concentration 

during fires may increase. Inhalation of alpha-emitting radionuclides (
238,239,240

Pu and 
241

Am) is the main source 

of internal radiation doses. The proper protection of firefighters shall include: 

� protection from incorporation of particles through the mouth, nose and eyes (by wearing face masks 

and protective clothing),  

� protection from external gamma-radiation (through limiting the time of stay and reducing work 

outside of vehicles as much as possible), as well as 

� immediate and proper decontamination of clothing and equipment at the end of operations. 

 

Protective actions to reduce existing or unregulated radiation risks must be justified and optimized.  

 

As a result of ChNPP accident, the 30-km exclusion zone (EZ), and a zone of absolute resettlement prohibition 

(ZAR) of ChNPP has received the greatest radioactive contamination. Medium-living and long-living 

radionuclides 
90

Sr, 
137

Cs, 
238

Pu, 
239

Pu, 
240

Pu, 
241

Am (Tab. 1) are expected to be the main radiological hazard at 

present and in the coming future decades. At the moment of release, the main share of 
90

Sr, 
238

Pu, 
239

Pu, 
240

Pu 

and 
241

Am was contained inside the matrix of the irradiated nuclear fuel particles – fuel components of the 

Chernobyl radioactive fallout (Kashparov et al., 2001; Kashparov et al., 2003). Due to this fact, maps on 

contamination density of the ChNPP near zone area with theses radionuclides seem to be similar (Fig. 8 a, c, 

d).  

 

Fuel particles (FP) were formed as a result of nuclear fuel dispersion at the moment of initial explosion and 

further oxidation in the air (Kuriny et al., 1993; Kashparov et al., 1996). The density of fuel particles in size 

ranges from a few to hundreds of microns reached 8-10 g/cm
3
. That resulted in a high fallout rate of FP from 

the radioactive cloud, and a rapid decrease of radioactive contamination by heavy FPs of the ChNPP zone over 

distance. 

 

As opposed to heavy radionuclides of the nuclear fuel, volatile high-mobile 
137

Cs evaporated mainly at the 

high-temperature annealing of nuclear fuel, and the following condensation on various carriers (condensed 

component of the Chernobyl radioactive fallout); that has brought to a principally diverse pattern of 

radioactive contamination of the terrain (Fig.8b). 

The density of area contamination with the i-th radionuclide at the specific moment of time (
i
sA

) is a basic 

initial information to assess the levels of radioactive contamination of flammable material and evaporation of 

radionuclides during burning; and the same, as well, for calculating equivalent dose rates for external 

irradiation, and effective doses of internal irradiation formed due to inhalation intake of radionuclides in cases 

of forest and meadow fires. 

 

External dose of irradiation of firefighters is created mainly (more than 99 %) by gamma-irradiation by 
137

Cs 

and 
137m

Ba contained in litter, forest stand and top, mineral soil layer (Table 1). At present, pine forests litter 

may contain up to 50 % of 
137

Cs activity and up to 20 % of 
90

Sr from their total content in biogeocoenosis 

(Ipatiev, 1999; Yoschenko et al., 1996; Shityuk, 2011). Full-profile thick litters of coniferous forests are 

characterized by the biggest retentive capacity (up to 50 % of activity), and thin litters of deciduous forest by 

the minimum (less than 1 % of activity). At present time, more than 75 % of radionuclide activity in litter is 

concentrated in a layer adjoined to the mineral layer of soil, namely, in decayed or half-decayed layers 

(Sheglov, 2000; Perevolotsky, 2006). 

 

In addition, currently, up to 20% of 
137

Cs activity in mature pine forests may be found in forest stands (more 

than 50% in wood and about 20% in bark). Together with the high content of radiocaesium in litter, 
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characterized by its weak shielding of gamma-irradiation, it can significantly affect the formation of equivalent 

dose rates (EDR) for external human irradiation (Kashparov, 2014). 

 

In an area homogenously contaminated with 
137

Cs, EDR content in the air of such forests may be up to 1.5 

times higher than in woods and meadows, where the main part of radiocaesium is contained in the top 5-cm 

mineral layer of soil.  

 

The effective dose rate from external gamma-irradiation of radionuclides extP (μSv/hr) contained in 5-cm 

mineral layer of soil can be calculated as: 

BA
i

s
i

i

sext kP γ⋅⋅⋅= ∑
=

6

1

77.0 ,      (1) 

Where 0.77 – factor of equivalent dose conversion to effective dose per adult human; k – shielding factor 

equal to k=1 in open space, and k=0.1÷0.5 inside transport (tractor, auto et al.); 
1i

sB γ
- dose factor equal to ratio 

of EDR (µSv/hr) to density of area contamination with the i-th radionuclide (
i
sA

, kBq/m
2
) accumulated in the 5 

cm mineral layer of soil (Eckerman and Ryman, 1993) – Table 1.  

 

The expected effective dose from external gamma-irradiation extD (µSv) of radionuclides contained in the 5-

cm soil layer, during t hours period for an adult human, is equal to:  

tPtD extext ⋅=)( .      (2) 

 

The dose of internal irradiation for firefighters can be formed due to inhalation intake of radionuclides 

through respiratory organs. At the time of fire, high-temperature evaporation of radionuclides occurs as well 

as small-dispersed radioactive aerosol appears due to ash-formation and radionuclides condensation on 

various carriers (Yoschenko et al., 2006; Kashparov et al., 2000). All these facts are accompanied by a rise of 

above-ground radionuclide concentration in the air, up to hundreds and thousands times higher than the 

normal levels (Kashparov et al., 2000; Yoschenko et al., 2006). 

 

Currently, large parts of ChEZ and ChZAR territory are covered with forests, where ordinary pine and birch 

trees prevail (64% and 23%, respectively). Specific activity of the i-th radionuclide in grass and structural 

components of forest stands (wood, bark, branches, needles/leaves) can be estimated based on the data of 

the areal density of contamination with the i-th radionuclide and its transfer factor values from soil to dried 

components of flammable material for various species of trees or meadow grasses (IAEA, 2010). 

 

In cases of meadow and forest fires, forest litter or a layer of meadow litter represented by non-mineralized 

grasses of meadow is an important source of radionuclides release. The yield of dry crops in meadows of ChEZ 

and ChZAR reaches 0.2-0.3 kg/m
2
 usually; 

90
Sr and 

137
Cs content in crops and litter in regard to respective soils 

does not exceed 1 %; 
238

Pu, 
239

Pu, 
240

Pu, 
241

Am content would be even more than 10 times lower due to small 

values of soil-plant transfer factor (IAEA, 2010; Paskevich, 2006). The part of flammable material, which is 

burnt, depends on the type of fire and fire risk at various weather conditions, and varies from 0% for wood 

to 97% for needles/leaves. Evaporation of most volatile 
137

Сs from the burnt flammable material will range 

from 25 to 75%. 

 

To estimate the expected internal effective dose of human irradiation due to radionuclides inhalation intake 

into human organism, at the forest fire in the period of time t, it is necessary to know the integral, medium 

concentration of the i-th radionuclide in the area of human respiration, dispersed composition and the class of 

radioactive aerosols solubility, related dose coefficients, and the volume of air inhaled by a human in time t, 

that is depended on age, and intensity of respiration. 
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Dose coefficients, equal to an expected effective dose forming due to inhalation intake of 1 Bq of the i-th 

radionuclide to human organism can vary significantly depending on human age (size of organs, body and 

metabolism changes with age), the class of solubility (aerosol solubility determines metabolism of the i-th 

radionuclide in an organism) and the Activity Median Aerodynamic Diameter (AMAD), determining 

radionuclides transport and deposition in the respiratory system (IAEA 2011). Coarse aerosols are 

accumulated in the upper airways, small ones can fall into the alveoli of lungs. Radionuclides of soluble 

aerosols are absorbed quickly into human organism, but insoluble ones can be removed very slowly out of the 

respiratory system depending on place of their deposition.  

 

Based on the data on radionuclide contents in flammable material and on the release of the i-th radionuclide 

from the unit of surface in dependence on fire behavior type and the class of fire risk, an integral/medium 

over-ground concentration of the i-th radionuclide in the air at various distances from a source and different 

meteorological conditions can be estimated. To calculate such concentrations, various models describing 

convective rise and dispersion of radioactive aerosol in the atmosphere are usually used (Yoschenko et al., 

2006; Evangeliou et al., 2014, 2015). Nevertheless, these models do not permit to calculate the radionuclides 

concentration in the respiration area of the firefighter at the immediate vicinity of the fire front. 

 

During experiments in the exclusion zone of the ChNPP, with meadow fires (burning of dry crops) and ground 

fires transiting into crown fires (Fig.7), the following ratios have been established (Kashparov et al., 2000; 

Yoschenko et al., 2006):  

� meadow fires: the ratio of the airborn 90Sr and 137Cs median over ground volume concentration (

A
i

Rvs , Bq/m3) to the reserves in flammable material (Bq/ m2) was 10-6-10-5 1/m and for Pu and 

241Am from 10-7-10-6 1/m.  

� in case of heavy ground fires transiting into crown fires, the ratio of the airborn concentration of all 

radionuclides in the air to the reserves in flammable material at the surface was from 10-7-10-6 1/m. 

That allows to estimate the medium concentration of the i-th radionuclide in the area of where the 

firefighter is working ( A
i

Rvs ,Bq/m3).  

 

The expected effective internal dose of irradiation due to inhalation intake of radionuclides intD (µSv) per 

adult human during intensive work in t hours can be calculated as: 

vttD BA
i

inh
i

i

Rvs
⋅⋅⋅=∑

=

6

1
int )( ,    (3) 

 

Where v – volume of inhaled air: 3 m
3
/hr at hard physical activity of an adult human, and 1.5 m

3
/hr at easy 

work. 

 
i
inhB

-dose coefficient is equal to expected effective dose forming due to inhalation intake of 1 Bq of the i-th 

radionuclide in the organism of an adult human in µSv/Bq (see Table 1). 

 

The total expected effective dose for adult human irradiation TotD (µSv) at the forest fire suppression during t 

hours has to be equal to the sum of effective doses, resulting from external and internal irradiation: 

)()()( int tDtDtD extTot +=     (4) 

 

This allows to evaluate the possibility of exceeding the reference levels of the external (2.3 mSv/year) and 

internal (0.7 mSv/year) effective dose of participants firefighting in the 30-km Exclusion Zone (Anonymous, 

2008b). 
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During the grassland fires the released radionuclide fraction from the fuel material (litter and grass) into the 

atmosphere can be estimated as follows: 
137

Cs and 
90

Sr up to some %; Pu - up to 1 %. During the forest fires, 

up to 3-4% of 
137

Cs and 
90

Sr and up to 1% of the Pu isotopes can be released from the forest litter. The 

released fraction of the radionuclides during the forest fires may even be bigger if the source of release is a 

large-scale and is a very intensive fire, since in this case a bigger burn-up of the combustible material can be 

expected (Yoschenko, 2006b). Experimental and calculated data demonstrate that, even under the most 

unfavorable conditions, radionuclide resuspension during forest fires will not provide a significant 

contribution to terrestrial contamination. Additional terrestrial contamination due to a forest fire can be 

estimated to be in the range of 10
-4

-10
-5

 of its background value (Kashparov, 2000). 

 

For a wide range of forest fire scenarios related to the Chernobyl 
137

Cs radioactive fallout, the contribution 

of the inhalation dose to the total dose does not exceed several percent. The presence of alpha-emitting 

radionuclides (during forest fires in the 30 km ChNPP exclusion zone) causes a considerable increase of the 

inhalation component, which can be comparable with external exposure doses (Yoschenko, 2006a). The 

additional inhalation dose for firefighters exposed in the affected area can reach the level of additional 

external irradiation in the period of their mission. For example, during meadow and forest fires on the most 

contaminated areas of the Chernobyl exclusion zone with the equivalent dose rate of external radiation 4-16 

µSv/h the additional committed effective internal inhalation doses of the firemen due to a 1-h stay in the fire 

zone was 8-40 µSv.  The plutonium and americium nuclides constitute the dominating contribution to the 

inhalation dose (>99%).  

 

At the same time, taking into account the sharp decrease of the airborne radionuclide concentration with the 

distance from the source of release, it can stated that the inhalation component of the total dose (as well as 

the external irradiation from radionuclides in air) is not important for the personnel of the exclusion zone 

which is not involved in the fire fighting and for the population outside of the exclusion zone (Yoschenko, 

2006a). 

 

Table 1. Main characteristics of radionuclides and their dose coefficients. Source: IAEA (2011) 

 

# i-th radionuclide Half life-time 

(Т1/2) 

Specific activity of the i-th 

radionuclide in Chernobyl nuclear fuel 

(as of 2014), Bq/g 

Main type 

of radiation 

i
sB γ , 

(µSv/hr)/ 

(kBq/m
2
) 

i
inhB

, 

µSv /Bq 

1 
90

Sr→→→→90
Y 29 years 

(64,26 hours) 

6.19E+08 

 

β 6.2E-6 3.2E-2 

2 
137

Cs→→→→137m
Ba 30.17 years 

(2.5 min.) 

7.35E+08 

 

β, γ 7.9E-4 9 6.7E-3 

3 
238

Pu 87.74 years 6.41E+06 α 5.8E-8 43 

4 
239

Pu 24 100 years 5.07E+06 α 1.2E-7 47 

5 
240

Pu 6 563 years 7.77E+06 α 5.7E-8 47 

6 
241

Am 432.8 years 2.42E+07 α 1.7E-5 39 
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Up to 1.5 times higher in mature pine forests (B2, B3) with thick litter layer 
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c d 

Figure 6. Density of EZ and ZAR terrain contamination with 
90

Sr (a), 
137

Cs (b), 
238-240

Pu (c) и
241

Am (d) for May 10
th

  2006 

(Anonymous, 2008b) 

2.5 Explosives 
10

 

In many countries of Western, Eastern and Southeastern Europe, including the territories of the former Soviet 

Union, large areas of forests and other ecosystems are contaminated by unexploded ordnance (UXO) – 

artillery and mortar grenades, bombs and other ammunition – and land mines stemming from armed conflicts 

(Explosive Remnants of War – ERW) or from former military exercise areas and shooting ranges. Most of the 

ordnance was initially buried subsurface but moving gradually to the soil surface due to frost effect 

(pedoturbation). Wildfires occurring on those terrain may trigger uncontrolled explosions and threats of 

collateral damages – injury and the death of firefighters.  

 

Another problem is the wildfire threats to ammunitions depots. In Ukraine two major events occurred in 2004 

and 2008. A forest fire entered ammunitions depot in southern Ukraine in 2004 killed five people. In 2008 

artillery shells and other ammunition at a storage facility in Ukraine exploded when a forest fire swept into the 

depot. In 2008 similar events occurred in Kagan, Uzbekistan, where explosions killed three people and injured 

21 others; and a fire burnt an arsenal near Ulyanovsk (720 kilometers east of Moscow) in November 2009. The 

latest incident of this kind resulted in a large ammunition depot fire in Russia, which was attributed by some 

to be caused by a wildfire in May 2011 nearby the village of Urman (Bashkortostan). 

 

On the other side, there is also a need for the use of fire to maintain UXO-contaminated sites of high 

conservation value. Historically in Europe, active and former military training areas and shooting ranges have 

been shaped by wildfires in such a way that open land ecosystems of high biodiversity value have been 

created or maintained by recurrent fires. The Atlantic and continental Calluna vulgaris heathlands of Germany 

are a classic example of sub-climax ecosystems that historically had been maintained by intensive cultivation 
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(grazing, mowing, biomass export) and intentionally or accidentally lit fires on military training grounds. In the 

wake of demilitarization at the end of the Cold War and the unification of Germany in the 1990s and into the 

first decade of the 21
st
 Century, the use of former military ranges was largely abandoned, and subsidized 

maintenance of open land habitats has reached critical limitations due to the lack of appropriate policies and 

funding prioritization. The recent introduction of prescribed fire in Germany to maintain open heathland 

habitats is based on traditional burning practices and coincides with new ecological insights of applied fire 

research that are receiving increased acceptance from nature conservation groups and the public. The White 

Paper on Use of Prescribed Fire in Land Management, Nature Conservation and Forestry in Temperate-Boreal 

Eurasia (Goldammer, 2009, 2013b) is indeed calling for a widespread application of prescribed fire to maintain 

the conservation value of former military training sites. 

 

The presence of UXO, however, is a limiting factor for the application of prescribed fire on approximately 

250,000 ha of high conservation value terrain. A pilot project (research and development project) has been 

conducted in the Heidehof-Golmberg Nature Reserve in the State of Brandenburg, Germany, a former military 

shooting range, to test safe application methods of using armored vehicles (demilitarized tanks) for prescribed 

fire ignition and control. Monitoring and controlling the fire operations by an unmanned aerial system 

(helicopter drone with real-time video downlink to the control center) allows navigation as well as safe and 

efficient ignition and control of the armored vehicles. This project provided key expertise for fire suppression 

on UXO-contaminated terrain (Goldammer et al., 2012). 

 

3. JUSTIFICATION OF NEEDS AND TYPES OF PERSONAL PROTECTION EQUIPMENT FOR 

SAFELY FIGHTING VEGETATION FIRES ON CONTAMINATED TERRAIN 

3.1 Radioactive contamination 
11

 

The effective dose of irradiation for firefighting personnel in the area of ChEZ and ChZAR is formed by external 

irradiation from radionuclides found outside the human body (soil, litter, forest stand et al.) plus internal 

irradiation of the organism after radionuclide inhalation intake through respiratory organs, eyes, mouth, open 

wounds, etc.. All personnel participating in works in the Exclusion zone is therefore subject to individual 

dosimetric control (Anonymous, 2008a). 

 

The external dose of irradiation for firefighters can be reduced by means of minimizing the time of personnel 

staying in an area with high density of 
137

Cs contamination, shielding gamma-irradiation by material of car 

cabins (up to 10 times), using technical (remote-controlled) tools (auto, tractors, etc.), and through keeping a 

distance by means of aviation (airplanes, helicopters) applied for forest fire suppression. 

 

The internal dose of irradiation for firefighters formed by inhalation of alpha-irradiating radionuclides, may be 

comparable with the contribution of external irradiation in the 10-km zone of ChNPP, on the fuel traces of 

radioactive fallout. 

 

In cases of meadow and forest fires, radioactive aerosols of micron and submicron sizes are found in the air at 

short distances from the fire front (Fig.9). Volatile 
137

Cs, and partially 
90

Sr, are mainly found in the pitch 

particles of smoke. The most harmful alpha-irradiating radionuclides, 
238

Pu, 
239

Pu, 
240

Pu, 
241

Am, are re-

suspended into the air with ashes particles of micron size. The retention efficiency of these particles by 

Petrjanov cloth, used in respirators, exceeds 98 %. Therefore, aiming to protect the respiratory tract during 

firefighting, it seems expedient to apply various types of respirators and other individual protective tools for 
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respiratory organs, as well as using sealed and, if necessary, shielded car cabins. Inhalation intake of 

radionuclides can be reduced tens and hundreds times by the use of respirators etc.  

 

The contamination of skin and clothes of the firefighters due to the radioactive aerosols deposition is 

estimated as much lower than the permitted levels of surface contamination (Anonymous, 1997). 

 

 
 

Figure 7. Distributions of 
137

Cs on aerosol particles of different sizes, observed during the forest fire, (Kashparov, 2000) 

 
 

3.1.1 Personal protection equipment for radiation protection 
12

 

 

When fighting fires in a contaminated zone, the choice of appropriate Personal Protective Equipment (PPE) 

depends on:
13

 

� the response role and specific tasks; 

� the risk of contamination. 

 

PPE can protect against: 

� external contamination and partially against irradiation; 

� internal contamination via inhalation, ingestion, absorption through open wounds; 

� other physical hazards (e.g., debris, fire/heat, or chemicals). 

 

PPE cannot protect against exposure from high energy, highly penetrating forms of ionizing radiation. 

 

PPE should include:  

� a personal radiation dosimeter whenever there is a concern about exposure to penetrating ionizing 

radiation. Direct-reading personal radiation dosimeters may be used to monitor the radiation dose and 

can help workers stay within the recommended Dose Limits for Emergency Workers. Direct-reading 

dosimeters should be worn so that a worker can easily see the read-out and/or hear warning alarms. 

� recommended respiratory PPE includes a full-face piece air purifying respirator with a P-100 or High 

Efficiency Particulate Air (HEPA) filter. Other respiratory protective equipment (e.g., a simple surgical 

facemask, N-95 respirators), non-fit tested respirators, or ad hoc respiratory protection do not deliver 

appropriate or sufficient respiratory protection. 

 

Protective clothing with the ability to protect not only from aggressive substances but also from ionising 

radiation has been developed. Russian standards foresee an attenuation factor of external beta radiation with 
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energies up to 2 MeV (Sr-90) of not less than 150x and an attenuation factor of external gamma radiation with 

an energy of 122 keV (Co-57) of not less than 5.5x. 

 

In the following, different samples of Russian and American radiation-protection clothing sets for firefighters 

are given: 

 

Russian radiation-protection clothing set "RZK-T" (TU 8570-025-46840277-2003 with AI 005-2011) 

 

Designed for comprehensive protection of personnel during firefighting and rescue operations in areas with 

beta-gamma radiation. The set is designed to protect against external radiation, elevated temperatures, heat 

flux, incorporation of radioactive gases and aerosols via the respiratory and digestive tract, and skin 

contamination of mucous membranes. It is possible to attach individual dosimeters. 

 

Specifications of "RZK-T": 

� temperature range in which the set can be used: -40°C .to. +150°C; 

� operating time: from -40°C to +40°C: 20 minutes; from +40°C to 

+100°C: 15 minutes; from +100°C to +150°C: 3 minutes; 

� attenuation factor of external beta radiation with energies up to 

2 MeV (Sr-90) of not less than 150 x; attenuation factor of external gamma 

radiation with an energy of 122 keV (Co-57) of not less than 5.5 x; 

� time to put the set on (with help by one assistant): max. 3 minutes; 

� time to take the set off: not more than 20 minutes; 

� weight: not more than 25 kg. 

 

Included items in the set: insulating outer suit with a hood, windows, bay-

contained breathing apparatus, rubber gloves and boots, boots and leggings; 

overall internal thermal insulation; hood with a heat-insulating inner protective 

helmet; heat-radiation-protective clothing; radiation protection cape, overalls, 

pants, boots insoles; hygienic liquid-absorbent underwear. 

 

Russian radiation- and heat-protection clothing set "RZK-MT" (TU 8570-025-

46840277-2003 with AI 005-2011), complies with GOST R 53264-2009 

 

Designed for comprehensive protection of personnel during firefighting and rescue operations in areas with 

beta-gamma radiation. The set is designed to protect against external radiation, elevated temperatures, heat 

flux, incorporation of radioactive gases and aerosols via the respiratory and digestive tract, and skin 

contamination of mucous membranes.  

 

A breathing apparatus with compressed air is worn over the suit; the 

operating time can be increased by a quick change of cylinders. The suit 

protects against heat fluxes up to 14 kW/m
2
 (at least 180 seconds). 

 

The suit does not restrict the freedom of movement and allows to overcome 

hatches and manholes of a diameter of 600 mm. The presence of the face 

seal allows the use of individual full-face masks. Protective cloaks, shoe 

covers, and leggings provide additional protection in chemically aggressive 

environments and against heat fluxes. 

 

Specifications "RZK-MT":  

� Temperature range in which the set can be used: -40°C to +150°C; 
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� Operating time: from -40°C to + 40°C: 20 minutes; from +40°C to +100°C: 15 minutes; from +100°C to 

+150°C: 3 minutes; 

� Attenuation factor of external beta radiation with energies up to 2 MeV (Sr-90) of not less than 150 x; 

attenuation factor of external gamma radiation with an energy of 122 keV (Co-57) of not less than 5.5 

x;  

� Protects against a broad spectrum of aggressive environments, including propellant and chemical 

warfare agent, as well as high intensity heat fluxes up to 14 kW/m2; 

� Time to put the set on (with help by one assistant): max. 3 minutes; 

� Time to take the set off: not more than 20 minutes; 

� Weight: not more than 18 kg. 

 

Included items: External jumpsuit with hood, rubber boots, gloves; heat- and radiation-protection overalls; 

radiation-protection cape, vest, pants, boots; hygienic liquid-absorbent underwear. 

 

Russian radiation- and heat-protection clothing set "RZK-M" (TU 8570-047-38996367-2004 with AI 005-2011) 

complies with GOST R 53264-2009 

 

This mobile radiation protection suit is based on the lightweight aggressive chemicals protection suit "TASK-

M". 

 

It is designed for comprehensive protection of personnel during firefighting and rescue operations in areas 

with beta-gamma radiation, especially in confined areas with thick walls like civil and military ships with 

nuclear power engines. A breathing apparatus with compressed air is worn over the suit, the operating time 

can be increased by a quick change of cylinders. The suit does not restrict the freedom of movement and 

allows to overcome hatches and manholes of a diameter of 600 mm. The presence of the face seal allows the 

use of individual full-face masks. 

 

Specifications of "RZK-M":  

� Temperature range in which the set can be used: -40°C to 

+150°C; 

� Operating time: from -40°C to +40°C: 20 minutes; from +40°C 

to   +100°C: 15 minutes; from +100°C to +150°C: 3 minutes; 

� Attenuation factor of external beta radiation with energies up 

to 2 MeV (Sr-90) of not less than 150 x; attenuation factor of external 

gamma radiation with an energy of 122 keV (Co-57) of not less than 5.5 

x;  

� Time to put the set on: max. 3 minutes; 

� Weight: not more than 18 kg. 

 

 

Included items: Hygienic sweat-absorbing underwear; radiation-

protection vest, cape, pants and boots; heat- and radiation-protection 

overalls; outer suit with gloves and boots. 

 

American radiation-protection suit with “Demron” fabric (www.radshield.com) 

 

The New York City Fire Department (FDNY) has decided in 2010 to “incorporate Demron in its chemical 

protective clothing (CPC) upgrade program to enhance its response capabilities with universal protection. 

Hazardous Materials Company 1, one of the first FDNY teams to deploy Demron, is using RST’s Demron Two-

Ply Radiation Torso Vest, Demron-W High Energy Nuclear/Ballistic IED RDD RED Shield, and Crew Protection 
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Blanket. These technologies maximize safety while minimizing the time, manpower and resources required to 

respond to potential emergencies. The vest may be worn under most hazmat suits to protect vital organs, the 

thyroid and groin. It proved in tests by the U.S. Department of Energy to shield against X-Ray and low energy 

Gamma emissions, and against high- and low-energy Beta and Alpha particles. The nuclear/ballistic shield is a 

flame- and acid-resistant blanket that helps contain blasts and high-energy radiation sources and can help 

prevent or minimize catastrophes. The blanket proved in tests by H.P. White Laboratory to provide Level IIIA 

ballistic protection and the highest fragmentation protection. The Crew Protection Blanket, which RST custom-

created specifically for FDNY, provides complete nuclear shielding for first responders and may also be used to 

transport radiation victims without contaminating others.” 

 

Tests of the radiation protection capability of Demron fabric undertaken by the Lawrence Livermore National 

Laborator in 2003 showed: 

� “Demron is effective as a radiation shield, comparable to lead in terms of g/cm2 and tantalum 

according to the mass attenuation coefficient, against gamma, x-ray and beta emissions.” 

� “For Demron, with a density of 3.14 g/cm3, the thickness would be 0.8 mm corresponding to 2 layers 

for the present sample. For lead with a density of 11.3 g/cm3, the thickness would be 0.2 mm.” 

� “Demron’s physical characteristics as a flexible, malleable fabric make it much easier to work with and 

handle than lead.” 

� “Unlike lead, according to Radiation Shield Technologies, Demron is non-toxic, contains no dermal or 

inhalation risks to the user, and requires no special or restrictive conditions for disposal.” 

� “At the current sample thickness (0.38 mm), Demron provides a factor 3 protection against beta and a 

factor of 10 against low energy gamma emissions.” 

� “The mass attenuation coefficients can be used to determine the thickness of Demron fabric required 

to successfully shield against higher energy/intensity gamma radiation. While the exact composition 

and construction of the Demron fabric is proprietary, it can be concluded that for radiation shielding 

purposes, Demron shields similar to lead by weight, yet poses none of lead’s environmental or 

biological dangers.” 

 

3.1.2 Radiation survey instruments and radiation monitoring  

 

There is a large number of devices existing to measure both radiation levels as well as the absorbed dose. In 

the following, a selection of Russian devices is given:  

 

Radiation levels measurement devices 

� DP-5V (A, B), IPD-5: designed to measure the levels of beta and gamma radiation (0.05 mR/h to 

200 R/h). There are six sub-band measurements. Unit weight: 3.2 kg. 

� DP-3B: can be installed on mobile devices like cars, boats and so on. Designed to measure the levels of 

gamma radiation (0.1 to 500 R/h). The device has four sub-bands. Unit weight: 4.4 kg. 

� IPD-21, IPD-22: can be installed on mobile devices like cars, boats and so on. Designed to measure the 

levels of gamma and neutron radiation (0.01 to 104 R/h). 

 

Dosimeters 

� DP-70MP: measurement of gamma and neutron radiation dose in the range of 50 to 800 rad. It is a 

glass vial containing a colorless solution. The ampoule is placed in a plastic (DP-70MP) or steel (DP-

70M) case. The case cover inside has a reference color corresponding to the color of the solution at a 

dose of 100 rad. With irradiation, the solution changes its color. In order to determine the received 

radiation dose the vial is removed from the case body and inserted into a colorimeter. Rotating disc 

filters help to match the color with the color of the ampoule and define the dose. 

� ID-1: Set with ten individual dosimeters to measure gamma and neutron radiation doses in the range 

of 20 to 500 rad. 
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� PH-11: Set with 500 individual dosimeters to measure gamma and neutron radiation doses in the 

range of 10 to 1 500 rad. Doses can be summarized over a period of 12 months. It has a digital 

countdown indicator on the front panel. 

 

3.1.3 Organizational questions 

 

Protective equipment for firefighters is only a means to win time and extend the span they can work in a 

radiating environment. However, firefighting in nuclear contaminated areas must be paralleled by other 

organizational measures to reduce risks of exposure. 

 

I. Organization 

 

Fighting fires in contaminated forests may result in: 

� exposure to dangerous levels of radiation → absorpYon of dangerous dose levels by external 

irradiation; 

� heavy smoke with radioactive particles → breathing of smoke can result in internal exposure and 

irradiation of firefighters, radioactive particles can be transported by wind over considerable distances. 

 

Therefore, when organizing firefighting in contaminated areas one must have a clear idea of the amount and 

type of combustible materials in the forest, contamination types and levels, the available firefighter force and 

their training levels and protective equipment and heavy equipment which is available. All these factors will 

define the intervention strategy. At all times it should be ensured that personnel and equipment are not 

located downwind of the fire zone. 

 

II. Training 

 

Training on chemical and nuclear protection needs to address several aspects in addition to the basic training 

of each firefighter.
14

 This includes: 

� basic understanding of properties of chemicals and of radiation, basic approaches for personal 

protection / safety; 

� types of individual (PPE) and collective protection materials; 

� correct use, servicing and disposal of protection materials; 

� fundamentals of nuclear dosimetry and radiation protection (see below); 

� risk minimization approaches during deployment of firefighters in contaminated zones; 

� radio communication procedures to prioritize transmission of emergency messages; 

� when utilizing aviation, especially helicopters: Prescribe to leave aerial transport means only after the 

deposition of the dust in the landing area; 

� decontamination, zoning, signals and symbols. 

 

The standard principles of radiation protection are: 

� avoid exposure resp. keep exposure time to a minimum; 

� stay as far away from the source as possible; 

� establish shielding screens (materials used depend on the type of radiation to protect against); 

� do not smoke, drink or eat in a contaminated area; 

� do not touch your mouth, eyes, nose, open wounds with your hands when in a contaminated area; 

� check hands and feet with a radiation monitor before leaving a contaminated area; 

� at minimum, wash your hands when leaving a contaminated area. 

 

                                                      
14

 For details see handbooks such as the Swiss handbook for ABC incident management (FKS, 2014) 
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III. Radiation protection services 

 

Organizational measures 

 

In addition to the normal firefighter teams, a radiation monitoring service checking exposure of firefighters 

needs to be established with at least following tasks:  

� registration of daily received doses of all firefighters (including new arrivals) in a special journal;  

� organization of regular health checks for all firefighters;  

� setting up an area for taking off clothes and of a decontamination area for equipment; 

� setting up a collection and disposal strategy for contaminated materials (e.g. PPE, masks, equipment, 

etc.); 

� development of strategies leading to minimum radiation exposure to a minimum number of 

firefighters; 

� (re-)training firefighters on the basics of radiation protection;  

� preparation firefighter work plans for the next days (including allowable work time and organization of 

shifts) taking into account previously received radiation doses, heat exposure, and predicted wind 

direction; 

� participation of dosimetric personnel in firefighting operations, measurement of radiation levels in the 

zone of operations; 

� calibration and servicing of radiation monitoring devices;  

� daily reporting of dose information to operation management and to a national dose register; 

� procurement of maps for the fire departments, which present the radioactive contamination (including 

plutonium contamination) of the territories; 

 

Personal measures: 

� a personal, direct-reading radiation dosimeter should be carried by each emergency responder. Direct-

reading dosimeters help workers stay within recommended dose limits. They should be worn so that a 

worker can easily see the read-out and/or hear warning alarms; 

� in addition to the personal dosimeter, the following personal protective equipment should be 

provided: respirators, lightweight protective suits, and protective cloaks; 

� supply reliable communication tools to all firefighter units; 

� use of anti-radiation drugs in areas with intense external radiation levels can be evaluated. This can be 

e.g. antibiotics, filgrastim (commercial name Neupogen), CBLB502 (by Cleveland BioLabs), Ex-RAD (by 

Onconova Therapeutics), CLT-008 (by Cellerant Therapeutics). Latter drugs are still in a clinical study 

stage;  

� the absorbed dose as well as the cumulative absorbed dose of each emergency responder must be 

controlled (individual dosimetric monitoring); 

� national legislation on radiation safety, and in absence of such, the emergency management team, 

must define an absorbed dose above which an emergency responder must be withdrawn from the 

inner perimeter (see below, “Zoning”). Decision dose in the U.S. is 0.5 Sv and in Russia 0.2 Sv; 

� firefighters shall observe and minimize the periods of exposure in the smoke plume, in order to 

minimize the individual inhalation doses. 

 

IV. Zoning 

 

Zoning is important to ensure a clear understanding of risks levels and related protection measures to take as 

well as to prevent the spread of contamination from a dangerous zone to the outside.  

 

Zoning (example of the Russian Federation) 
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1. In an area with a Cs-137 soil contamination level of 37-185 kBq/m
2 

(1-5 Ci/km
2
) and of a Sr-90 soil 

contamination level of 5.55 - 37 kBq/m
2
 (0.15-1 Ci/km

2
) the following measures apply: 

� firefighting is carried out mainly by conventional methods with the adoption of additional measures to 

protect workers from the harmful effects of dust and combustion products; 

� fire can be fought by stop-fires, ground- or air-based equipment using water and/or chemical 

extinguishing agents and flame-retardants.  

 

2. In an area with a Cs-137 soil contamination level of 185-555 kBq/m
2 

(5-15 Ci/km
2
) the following measures 

apply: 

� firefighting is carried out using fire trucks with a mounted water monitor as well as air based 

equipment. Chemical barriers can be erected.  

 

3. In an area with a Cs-137 soil contamination level of 555-1 480 kBq/m
2 

(15-40 Ci/km
2
) the following 

measures apply: 

� firefighting is carried out in accordance with specially designed plans taking into account the 

requirements of radiation safety;  

� air-based equipment should be used;  

� for final putting out of a fire, firefighters and fire trucks with mounted water monitor as well as air 

based equipment can be used.  

 

4. In an area with a Cs-137 soil contamination level exceeding 1 480 kBq/m
2 

(40 Ci/km
2
) the following 

measures apply: 

� air-based equipment has to be used;  

� for final putting out of a fire, firefighters and fire trucks with mounted water monitor as well as air 

based equipment can be used.  

 

Zoning (example from the US) 
15

 

 

Establish an outer perimeter if any of the following values are exceeded: 

� 10 mR/h exposure rate; 

� 60,000 dpm/cm2 for beta and gamma surface contamination; 16 

� 6,000 dpm/cm2 for alpha surface contamination. 

� the appropriate actions inside this perimeter are: 

� evacuate members of the public; 

� isolate the area; 

� ensure all emergency workers inside the area minimize the time spent in the area and follow the 

appropriate protection guidelines. 

 

Establish an inner perimeter at: 

� 10 R/h exposure rate. 

 

The appropriate actions inside this perimeter are: 

� exposure and activities within this perimeter have the potential to produce acute radiation injury. 

Actions should be restricted to time-sensitive, mission-critical activities (e.g., lifesaving). 

 

V. Health services 

 

                                                      
15

 http://www.ncrponline.org/Publications/Commentaries/Commentary%20No%2019%20Overview.pdf 

16 pm = disintegrations per minute or particles per minute 
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Appropriate medical services (on site, in nearby hospitals, in specialized hospitals for treatment of heavily 

irradiated patients) must be organized. At the end of a firefighting campaign, all involved staff need to 

undergo medical investigation at a specialized medical facility and the total accumulated dose needs to be 

recorded in a central, national register. 

 

VI. Regulations 

 

In absence of existing national legislation, standards set by the International Atomic Energy Agency (IAEA) can 

be consulted. Regulations should include the following key issues: 

� a list of radioactive substances and their properties;  

� organization and means of radiation monitoring services; 

� measures and procedures for the protection of personnel from radiation exposure;  

� maximum allowable exposure levels for firefighters, first responders and forestry personnel under 

normal conditions and during a fire; 

� measures and procedures for decontamination of personnel and equipment and for final storage of 

disposed of, contaminated materials;  

� information of personnel on received radiation doses; 

� organization of medical services;  

� radiation exposure to firefighting personnel above permissible dose limits can be allowed for a certain 

time and within limits defined by sanitary regulations. E.g. a planned heightened irradiation of 

personnel can be allowed once during a lifetime with their voluntary consent and with prior 

notification of potential doses to be received and associated health risks. Irradiation of the personnel 

should not exceed 10 times the dose limits set for radiation workers (in most countries 20 mSv/y).  

 

Sample legislation on dose limits is e.g. SanPin 2.6.1.2523-9 "Radiation Safety Standards (NRB-99/2009)", 

approved by the Resolution #47 of the Chief State Sanitary Doctor of the Russian Federation dated July 7
th

  

2009. 

3.2 Chemical contamination 
17

 

Personal Protective equipment (PPE) is a critical tool to avoid negative health effects by contaminated smoke 

on firefighters. Unavailability of PPE may cause serious health effects to firefighters and also drastically reduce 

their effective work time at the fire line. In the end, the lack of proper PPE can lead to failing in fire 

suppression as well as some serious injuries or even cases of death. Concept model of PPE use is shown in 

Figure 10. 
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Figure 8. Conceptual model of vegetation fire smoke health impact. Source: Dokas et al. (2007) 

 

At the moment, there is no solution for a comprehensive protection from all chemical hazards by vegetation 

fires for forest firefighters. In severe cases with high levels of chemical contamination special breathing 

equipment like air emergency systems for forest firefighters need to be used for a relatively short time 

(Fig.11a). Emergency air systems provide firefighters with clean and cold air necessary for self-protection 

maneuvers, reducing intoxication and respiratory tract burns. This equipment helps to avoid inhaling big 

amounts of smoke at some specific moments of fire. In addition, the system can be used in assisting other 

people by means of a valve to deliver positive pressure air. Usually it guarantees 6-7 minutes of air to escape 

from a situation when firefighters are trapped. 

 

 

 

 

(a) (b) (c) 

 

Figure 9. (a) Emergency air system, (b) half face masks with filter, and (c) helmet for protection from particles 
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Half-face masks (e.g. particle filter masks) or full-face masks with filters can provide protection levels up to 50 

and 200 times, respectively, over the permissible exposure limits for particles according to European 

standards (Fig. 11 b, c). At the same time, it needs to be stressed that particle filter masks do not protect 

against the most dangerous chemical factor in vegetation fire – carbon monoxide. Full-face masks with filters 

can partially protect from respiratory irritants (aldehydes) and CO. 

 

3.3 Explosives
18 

 

3.3.1 Standard personal protective equipment (PPE) for non-dangerous situations 

 

The availability and training in the proper use of basic personal protective equipment (PPE) is a prerequisite 

for all personnel involved in fire suppression, regardless of additional protective equipment for firefighting 

operations on contaminated terrain. Key requirements for PPE include the following conditions: 

� must not contribute to fatigue; 

� must not fail prematurely; 

� must be functional, durable, comfortable and economical. 

 

The comfort concern is primarily one of heat stress and PPE weight, since the firefighter is often working for a 

prolonged period of 12-16 hours in a high-temperature environment. 

 

The basic components of basic PPE include the following:
19

 

 

Helmets 

 

A critical piece of PPE, hardhats have saved many lives and prevented serious injuries by protecting the 

wearers against falling trees and rolling rocks. Current models must meet EU fire safety regulations EN 397, EN 

443 and EN 12492.
20

 A wildfire helmet should be made from one piece of ABS/PC and include the following 

external elements: 

� ventilation system; 

� anchorage system for glasses; 

� tweezers for front light system; 

� anchorage for lantern; 

� anchorage system for folding screens; 

� anchorage system for neck protectors; 

� anchorage system for radio and video systems; and  

� should be designed to be used together with ear protectors. 

 

The internal harness should have an adjustment system along with a breathing padded fabric. 

 

Jackets / shirts, pants and boots 

 

In general, yellow shirts and green pants are made of aramid fabric (Nomex IIIR). Aramid fabrics are durable 

and provide good thermal protection. Like most fabrics, aramid bums if exposed to flame, but stops burning 

                                                      
18 Author: J.G. Goldammer 
19

 For illustrations: See Annex 
20

 http://ec.europa.eu/enterprise/policies/european-standards/harmonised-standards/personal-protective-

equipment/index_en.htm 
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when the flame is removed. Instead of melting or burning to ash, it forms a char that helps to protect the skin. 

Extensive experience on wildfires has shown that loose-fitting clothing is more important in preventing serious 

bum injuries than the fire resistance of materials. Clothing that is tight-fitting poses a danger from radiant heat 

and heat stress, and at the same time reduces the firefighter's ability to perform. Flame-resistant clothing 

should be designed so that the movement of the wearer induces ventilation, which reduces moisture by a 

billows effect. Most advantageous are fire coats with the following characteristics: 

� up to four frontal pockets with an easy-opening-system designed especially for gloves. One of the 

pockets can also carry a portable radio transmitter; 

� one waterproof inside pocket designed especially for documents; 

� velcro to hold the ID (name of the firefighter) on the chest; 

� a hooking ring for a radio transmitter on the shoulder; 

� cuffs can be adjusted from inside or outside by Velcro; 

� raised collar on the back to ensure neck protection; 

� lapel for neck protection adjustable by Velcro; 

� fixing system for a smoke mask; 

� central easily-opened zipper, quick and secure; 

� bright yellow fabric (to ensure good ground and aerial visibility of the firefighter in the vegetated 

terrain) based on Nomex fibers and three-layered 265 gr/cm3 VISCOSA FR to guarantee sufficient 

thermal isolation and protection from radiation; 

� Nomex stitches and is highly resistant to rubbing and wearing out caused by the forest environment;  

� bright high-visibility reflecting stripes will ensure enhanced visibility. 

 

Trousers should be made of fire-resistant fabric (yellow or any other colour) and should be of wide design 

which facilitates the freedom of movement. 

 

Firefighting in densely vegetated, sometimes steep and uneven terrain requires stable boots. Slips and falls 

account for more than 15 percent of all injuries in wildland fires. Thus, non-slip soles are essential. Boots 

should be made of fire-resistant leather and with a waterproof layer. 

 

Gloves 

 

Gloves must be specially designed to protect the firefighter's hands against blisters, cuts, scratches and minor 

bums during routine firefighting. They also play a major fire protection role in the event of an aircraft accident 

or fire entrapment. Reviews of past fire entrapments have shown that, without gloves, a firefighter risks the 

loss of fingers from serious bums. This also may be true with conventional oil-tanned work gloves that bum or 

shrink in intense heat. Individuals entrapped in fire shelters also report that gloves are necessary to hold the 

hot shelter material to the ground without being burned.  

 

Eye Protection 

 

The protection from smoke, dust and small flying objects is essential. Glasses should be comfortable to wear 

for 8-16 hour shifts. Fixing the glasses to the fire protection helmet is preferable. Glasses have the following 

characteristics: 

� lower and upper ventilation; 

� open pore foam that traps all kinds of dust; 

� rapid fitting system (elastic band with rapid lateral unlocking mechanism); 

� double polycarbonate lens, anti-fog treatment inside and anti-scratch coating outside; 

� soft, antiallergenic foam band closely adhesive to the face for protection from coarse powder and 

molten metals; 
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� all of the materials of these glasses need to be fire retardant and meet certification standards (CE 

Standards - ANSI Z87.1-2003/MIL-V-43511C Clause 3.5.10 STANAG 2920/4296). 

 

Fire protection mask 

 

A fire protection mask will protect the face from radiation, helps to prevent burns and reduce smoke and ash 

particles inhalation, due to its particle filter inserted inside the mask. The mask should have: 

� an activated carbon filter; 

� exhalation valve; 

� high-visibility reflective strips; 

� fabric: Nomex; 

� mask certification standards: EN 531 (A B1 C1) EN 15614; 

� filter certification standards: EN 149:2001 FFP1. 

 

Neck shield 

 

Neck shields are used to protect the forest firefighter’s neck from high temperatures and flames and must 

meet certification standards (EN 340/03 EN ISO 11612/08 EN 15614/0). 

 

Fire Shelter 

 

The fire shelter has become an important component of the PPE. The tent-like shelter is the only piece of 

equipment that offers lifesaving protection in the event of an entrapment. The shelters are made of 

aluminum, fiberglass and Textar, reflect radiating heat, provide breathable air, and protect the lungs and 

airways from flames and hot gases, the leading killers in entrapment. Certification standards to be met: UNE - 

EN ISO9151:1995, EN ISO11612:2010 and EN ISO6942:2002. 

 

3.3.2 Personal protective equipment (PPE) for fighting fires on terrain with a high risk of explosions 

 

Firefighting on terrain contaminated by radioactivity, chemicals and explosives / land mines will require 

additional protection. In contrast to the protection of firefighters against chemicals, the protection against 

explosives requires strong physical armor designed to absorb and/or deflect the impacts of fragments. For 

firefighters, hard-plate reinforced modular tactical vests, similar to the armor used by combat soldiers or mine 

disposal teams, are required in situations of rescue under high-risk conditions or in case of needing to control 

a fire nearby, a fire-subjected UXO (standards to be met: NIJ-3A). Ballistic helmets designed for demining are 

usually equipped with a ballistic visor.  

 

  



 

33 

 

4. FIRE CONTROL EQUIPMENT AS WELL AS THE BEST AND SAFEST PRACTICES OF 

FIREFIGHTING ON CONTAMINATED TERRAIN 

4.1 Radioactive contamination 
21

 

The 10-km Exclusion Zone of the ChNPP is characterized by the highest level of radioactive contamination 

related dose rates threatening the health of firefighters (Fig.1). Owing to that fact, remote instrumental 

techniques for fire suppression are necessary with the aim of minimizing the stay of personnel in a highly 

contaminated area. 

 

The methods and tools used for fire suppression on radioactive contaminated territory have to be selected 

with the aim of minimizing the release of radioactive aerosols containing alpha-irradiating radionuclides (
238

Pu, 
239

Pu, 
240

Pu и
241

Am) from the soil surface, as well as the time of personnel being exposed to the smoke. Higher 

fuel moisture content reduces the release of radioactive aerosols. Using cars and heavy machinery equipped 

with sealed cabs (pressurized filtered air) permits to decrease, up to tens and even hundreds times the 

inhalation intake of radionuclides by firefighters. 

 

The biggest reduction of expected doses of external, as well as of internal irradiation is reached, if airborne 

equipment (helicopters, airplanes) is applied for firefighting. If after finishing the work on fire suppression 

radioactive contamination is exceeding the permissible levels, decontamination of equipment and tools must 

be undertaken.  

 

In heavily radiating environments, armored vehicles and combat reconnaissance patrol vehicles adapted to 

specific tasks can be used. The risk of activating materials is low due to the absence of large neutron streams 

(except during the immediate period of a nuclear reactor catastrophe), however, decontamination of the 

equipment at the end of service remains important. 

 

4.1.1 Decontamination 

 

The ultimate goal of decontamination is to eliminate or reduce the harmful effects of ionizing radiation on the 

human body. A characteristic feature of decontamination is a strictly differentiated approach to the definition 

of the items to be decontaminated. This allows to prioritize activities according to the risks for life and to use 

in an optimum way limited manpower and equipment. 

 

Contamination may be adhesive, superficial and deep. In the case of adhesive contamination, it is easily 

removed from a surface if the separation force is greater than the force of adhesion. In an aquatic 

environment, the adhesive force is significantly reduced, so the use of water for decontamination is common. 

 

Less commonly, you may encounter cases of superficial and deep contamination. They are caused by 

processes of adsorption, ion exchange and diffusion. In these cases, the entire top layer needs to be removed 

along with the radioactive substances. 

 

All methods of decontamination can be divided into liquid and dry. 

 

� Liquid: removal of contamination with a jet of water or steam, or as a result of physical and chemical 

processes between a liquid medium and the contaminant. The efficiency depends on the flow of liquid, 

distance to the surface to be treated and additives used. The highest decontamination factor is 
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achieved when the direction of the jet is at an angle of 30-45° to the work piece. To reduce volumes of 

water, used brushes should be used.  

� Dry: mechanical removal through sweeping, suction, blowing, removal of the contaminated layer, 

tilling of soil.  

� Additives can enhance decontamination efficiency: 

- Detergency of water can be improved by adding 0.1-0.5 % of surfactants like common soap, 

gardinol (powder of white or cream color, readily soluble in water to form a mildly alkaline 

medium), sulfonol (paste or in the form of brown plates brown), OP-7 and OP-10 (industrial 

wetting agents and emulsifiers).  

- Complexing solutions can be made with sodium phosphates, oxalic acid, citric acid, tartaric 

acid and their salts, sodium hexametaphosphate, and other salts of phosphoric acids. 

� Organic solvents (dichloroethane, benzene, kerosene, diesel fuel) can be used to decontaminate metal 

surfaces (machines, equipment, means of transport). 

� Sorbent material and resins (ion exchangers) can be used to remove radionuclides from solution. A 

common sorbent is specially treated, fine-grained activated carbon (e.g. karboferrogel). 

� Decontamination of vehicles and equipment can be partial or complete. Partial decontamination 

would be only of components with which humans come into contact with during the operation. When 

decontaminating a vehicle, it is necessary, first of all, to clean the tent. Then the cab top, motor hood, 

front glass, mud flaps and footboard are wiped with a cloth. Thereafter, the inner surface is treated 

including cockpit instruments and controls. If the machine is supposed to transport people, then the 

loading area is further cleaned. Complete decontamination is carried out outside the contaminated 

zone at specialized stations with off-water treatment capacity.  

� Decontamination of clothing, footwear and PPE may also be partial or complete. It all depends on the 

specific conditions, the degree of contamination and the prevailing situation. Partial decontamination 

can be done by removing clothes, shoes, etc. and by hanging them on boards, ropes, trees and then 

thoroughly beating them for 20-30 minutes with a broom, brush or sticks (while wearing PPE to 

exclude incorporation of released dust particles). Rubber, rubber-coated materials, synthetic films and 

the skin must be wiped with a cloth dampened in water or decontamination solution. 

� Decontamination of equipment should be undertaken near or in the contaminated area in order to 

prevent the spread of contamination.  

� In case of forest fires, activation of materials is an unlikely issue. Therefore, decontamination is mainly 

a task of cleaning equipment from radioactive dust particles. This can be done using water and 

detergents or other solving agents as discussed above. 

� While firefighting is ongoing, contact parts of equipment should be regularly decontaminated. At the 

end of the mission, the equipment needs to be fully decontaminated. Materials which cannot be 

decontaminated need to be sent for final disposal.  

� Initial personal monitoring and decontamination efforts at the scene should focus on preventing acute 

radiation effects.  

� Cross contamination is a secondary concern, especially when the contaminated site and the number of 

evacuees is large. E.g. there is a risk of radioactive aerosols emanating from dirty clothes.  

� Individuals with spot contamination > 2.2 x 10 6 dpm should be given priority for decontamination. 

� In complex circumstances, the support of military chemical-radiological defense units can be 

requested. 

 

4.1.2 Final disposal 

 

Radioactive wastes from decontamination or firefighting activities need to be disposed of in special facilities. 

Liquids, for example, can be brought to radioactive waste stores at nuclear power plants or other nuclear 

facilities.  
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4.2 Chemical contamination 
22

 

Fire control equipment and firefighting tactics used in case of suppression of vegetation fires in zones of 

chemical contamination depend on terrain conditions, the type and severity of the fire, the fuel load and the 

level of personal training. Usually, chemical enterprises are located near rivers on plain terrain – so forests 

around them are easily accessible even for heavy fire trucks and middle- and small-size fire engines. This 

allows to minimize the direct contact of fire brigades with fire lines and minimize contact with smoke 

contaminated by chemical elements. 

 

In case of small size (up to 5 ha) ground vegetation fires of low and middle intensity, classic techniques of fire 

suppression may be applied with the localization of fire development on the first stage followed by using plain 

water or water with retardants or a foaming agent, or by using tractors to make fire breaks ahead of the fire 

front. In the latter case, an important condition is that the tractor cabin has to be equipped with air 

conditioning and filtering systems. Hand tools teams may be applied for making fire breaks in case the tractors 

could not reach the potential borders of fires. 

 

Direct, parallel or indirect attacks depending on the situation could be used for small size fire suppression 

(Fig.12-14). In case of middle fire sizes (5-25 ha), indirect attacks should be used based on natural or artificial 

fire barriers. The technology is described in the EuroFire Competency Standards.
23

 

 

 

 

 
 

Figure 10.  Scheme  1 of a direct attack  
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 The EuroFire Competency Standards (http://www.euro-fire.eu/) for firefighters were developed by the Global Fire 

Monitoring Center and are available in Ukrainian language (http://www.fire.uni-freiburg.de/eurofire/ef_ukr.html) 
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Figure 11. Scheme 2 of a direct attack  

 

 

 
 

Figure 12. Scheme of an indirect attack 

 

The main goal of any fire suppression tactic is the minimizing the contact of hand crews with smoke during the 

creation of fire breaks by the compulsory use of a half face mask with filter by personal working at the fire line. 

In case of large fires, only fire trucks and retardants should be used to stop a fire through the long-distance 

application of suppression agents. 

4.3 Explosives 
24

 

Fire-triggered explosions of UXOs and land mines depend on the history of the contaminated sites. In general 

the highest threats exist on lands in which armed conflicts had taken place previously, as all ammunition 

(including artillery grenades, rockets, cluster bombs and bombs) and land mines used had explosive charges / 

warheads (armed / live ammunition). This may also be the case in active or abandoned military training areas 
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or shooting ranges where live ammunition was used. On some military training areas, however, only handguns 

or exercise ammunition has been used, resulting in a lower risk of harmful detonations.  

 

The experience of the GFMC in the use of prescribed fire on UXO-contaminated terrain in Germany and 

evaluating the narratives of wildfire incidents have led to the following conclusions (without having a 

sufficiently large database that could prove these observations statistically): 

 

Fire Season 

It has been observed that fires burning during the cold season, i.e. the Northern Hemispheric winter 

season, result in less fire-triggered explosions. On the other side, fires burning during the generally hot 

spring or summer fire season result in high number of explosions. The reason for this may be the 

general environmental temperature of the soil and the lower air layer influencing cooling or pre-

heating of the UXO.  

 

Fire behavior 

A surface fire driven by the wind, especially in light fuels (e.g. grasslands or grass understory in open 

pine forest stands) in general leads to marginal heating of the soil surface due to its short residence 

time at the UXO location. The UXO may become exposed to higher temperatures only for a short time 

and may be completely unaffected by the heat, especially during the cold winter season.  

 

A fire burning slowly against the wind, however, has a longer residence time and thus resulting in an 

increased time span of the UXO or land mine being exposed to higher temperatures. 

 

In addition to the wind, the topography also influences the residence time of a fire, i.e. a fire rapidly 

spreading upslope has a shorter residence time than a fire slowly burning downslope. 

 

Fuel load 

The amount of living or dead combustible materials (fuels) on the surface / ground determines the 

energy release and, together with fire behavior and topography, the residence time and energy release 

on the UXO location. A fire burning rapidly in a light grass layer will release less heat to the soil surface 

as compared to a fire advancing slowly in a fuel layer consisting of a high load of combustible materials 

(dead tree logs, branches, twigs, needles, understory vegetation) or in organic layers (raw humus or 

duff). 

 

In Germany the above-mentioned research and development (2009 – 2014) addressed the use of fire on 

former military terrain contaminated by unexploded ordnance. While this project primarily focused on the use 

of prescribed fire for maintaining disturbance-generated high-value conservation areas, the spin-off products 

of the project allow the use of the concepts and technologies in fighting wildfires on contaminated terrain. 

While the final findings of this project, which was technically led by the GFMC, are not yet published, the 

preliminary experiences and conclusions are manifested by Goldammer et al. (2012). 

 

The readiness of a UXO to explode also depends on the age and the state of corrosion of the metal case of the 

explosive charge. Corroded metal cases and chemical reactions with ambient air, including ambient heat, may 

result in faster self-ignition, e.g. of phosphor ammunition (tracer bullets and phosphor bombs). 

 

Safety standards concerning wildfires burning in UXO-contaminated terrain are prescribed in some countries. 

For instance, in Germany the general fire service law prescribes a safety distance of 500 m to fires burning on 

sites bearing explosives. Explosive Ordnance Disposal (EOD) / safety rules require even a vertical and 

horizontal safety distance of 1,000 m to burning UXO sites. Regardless of the safety rules in other countries: 

Keeping such distances from a fire will not allow any intervention, neither on the ground, nor by aerial 
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response (aerial dropping of water, retardants or foam from distances in the magnitude of hundreds of meters 

would not result in any effective fire suppression). 

 

Thus, there are three options for suppressing wildfires on UXO- / land-mine contaminated terrain: 

� under weather conditions of low fire danger and intensity (e.g. during the winter and early spring), 

prevailing light fuels, and surface fires burning with low to moderate intensity on terrain 

contaminated by exercise and other small arms ammunition, the local incident manager may 

decide to allow conventional approaches in fire control by creating fire lines and backburning at a 

safe distance. For fire suppression, aerial means could be involved. 

� in high-risk situations (high fire danger and intensity; expected explosions of high-impact UXO) 

ground personnel may be dispatched only if armored firefighting equipment and / or special 

ballistic PPE is available, or 

� remotely controlled or autonomously operating ground and aerial fire suppression means are used 

for fire suppression.  

 

4.3.1 Ground operations with armored equipment 

 

Armored fire suppression vehicles, notably converted former military tanks, have been developed by a 

number of countries and enterprises over the past decades, notable in the early post-Cold War period at a 

time when large numbers of surplus military hardware was available for potential civilian use. The above-

mentioned research and development project (cf. sections 2.5.4 and 2.5.5; Goldammer et al., 2012) involved 

three main components for the safe use of prescribed fire and for fighting wildfires on UXO-contaminated 

terrain: 

 

Armored fire suppression equipment 

 

An existing fire suppression tank SPOT-55, produced in and for the Armed Force of the Czech Republic, was 

used with its fully maintained armored structure. This tank provides a water container mounted in place of the 

turret with a capacity of 11,000 L of water, a high-pressure firefighting pump and nozzles. The tank, which was 

further developed in Germany for the use of firefighting in dangerous terrain, was further equipped with a 

camera system, satellite navigation / GPS system and radio communication. This equipment allows the tank 

crew to operate fully protected by armor, navigate in terrain without opening the hatch, and stay connected 

via a communication link with the incident commander.  

 

The incident commander directs the tank to the critical locations where suppression intervention is needed. 

Navigation is supported by the use of an unmanned aerial vehicle / system (UAV/UAS) described below. For 

illustrations: See Figures 2.27 and 2.28 in the Annex. 

 

In case of the need of firefighters or rescue teams entering a dangerous wildfire site the provision of ballistic 

protective clothing must be ensured (cf. Section 3.3.2 and Figures 2.6 and 2.7 in the Annex). 

 

Armored fire ignition equipment 

 

For setting prescribed fires, e.g. for conservation purposes, for creating black fire lines / buffer zones around a 

wildfire, or for backfiring, an armored ignition tank has been developed. The German project converted a 

former Czech BMP-OT-R5 command post vehicle to an ignition tank with full personal safety by leaving the 

armor unmodified (Annex, Figure 2.22). 

 

For ignitions over distances up to 80 m, a Pyroshot Green Dragon
®
 system was mounted on the BMP as a 

launcher for ignition devices (Plastic Sphere Dispenser – PSD) (Figure 2.23). The PSD have the size of a ping-
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pong ball and are filled with potassium permanganate (KMnO4). At the moment of firing, a glycol injection 

leads to a chemical reaction with KMnO4 and leads to the ignition of the capsule after ca. 20 seconds. The 

burning capsule ignites the vegetation. In addition, the BMP is equipped with an all-terrain vehicle (ATV) drip 

torch which offers ignition at the port side of the BMP up to a distance of 6 meters using a 4:1 diesel-gasoline 

mixture (Annex, Figures 2.24 to 2.25). 

 

4.3.2  Unmanned Aerial Vehicle / System (UAV/UAS) for operations control and coordination 

 

Since the incident commander of a prescribed burning or wildfire fighting operation needs to stay in a post 

outside the safety zone of up to 1,000 m and given the same restrictions imposed on manned aerial flights, it 

is mandatory to use an Unmanned Aerial Vehicle / System (UAV/UAS) for obtaining real-time visual / tactical 

information on the state of the fire, the positions and movement of armored ground forces and the 

reconnaissance of situations requiring intervention. In the above-mentioned project in Germany, an 

unmanned small helicopter of type CT BEE 6B
® 

 was used to obtain a permanent aerial video and still photo 

footage, transmitted to the incident command post in real time. The aerial reconnaissance component, due to 

aerial safety considerations preferably by UAV/UAS, is a prerequisite for any fire operation on terrain 

contaminated by land mines and UXO (Annex, Figures 2.27 to 2.30). 

 

Unmanned ground vehicles for firefighting support on dangerous terrain 

 

A recent development of a remotely controlled blade-weeding machine allows indirect forest fire attack by 

creating a fire line. The technology allows control personnel to stay outside the impact zone of exploding 

ammunition or radioactive dust. The prototype, developed by Vallfirest (VF Dronster) allows the remote 

control of fire line creation in vegetation types with fuels up to 8 cm in diameter (Annex, Figures 2.17 to 

2.18). 

 

UAV/UAS for aerial firefighting 

 

The development of drones for aerial firefighting has received recently a significant push by Lockheed Martin 

Corporation (U.S.A.), which has successfully tested K-MAX unmanned helicopters at Griffiss International 

Airport, airlifting and dumping water on fires. In November 2014, a team led by Lockheed Martin Corp. has 

successfully tested a pair of unmanned aerial drones to put out large or dangerous fires without endangering 

the lives of pilots. 

 

It is aimed that the unmanned UAV can work to fight fires day and night, in all weather, reaching dangerous 

areas without risking lives. Kaman manufactures the K-MAX helicopter, outfitted with Lockheed sensors that 

allow autonomous collection of water from a pond and delivery to the fire location (Annex, Figures 2.31 and 

2.32). 

 

UAV/UAS for aerial ignition 

 

With the risk of wildfire-triggered UXO explosions affecting manned aerial platforms, the development of UAV 

for aerial ignition is currently underway. It is expected that in 2015 the next generation of UAV (helicopter) will 

be available for aerial ignition of prescribed area fires and backfiring (Figures 2.33 to 2.36). 
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5. CONCLUSIONS AND RECOMMENDATIONS 

Fires burning in contaminated environments create additional, non-standard risks to firefighters and may have 

negative health impacts on the firefighters and on the local populations. Three main types of contaminated 

environments were considered in this report: (a) vegetation contaminated by radioactivity as a consequence 

of accidents of nuclear power plants, such as the territories contaminated after the failure of Reactor 4 of the 

Chernobyl NPP in 1986; (b) vegetation around chemical and industrial plants contaminated by regular 

emissions or as a consequence of accidents or as collateral damages of armed conflicts; (c) zones 

contaminated by unexploded ammunition in the region of former and current armed conflicts or active and 

abandoned military exercise and shooting ranges.  

 

It is concluded that wildfire control on contaminated terrain is extremely dangerous and difficult. This is why 

investments need to be prioritized to provide the appropriate equipment and increase preparedness and 

capabilities for safe and efficient wildfire control in order to reduce primary and secondary risks to firefighters 

and civilian populations. 

 

The following recommendations are given. 

 

1. Special fire management measures, personal protection means and tactics as well as appropriate 

health and environmental monitoring services should be identified, adapted and used for safe fire 

suppression in the abovementioned environments.  

 

2. The main risks to firefighter’s health are generated by smoke from fires burning in vegetation 

contaminated by radionuclides and chemicals. In consequence, management has to enforce the use of 

breathing protection means, and define and enforce exposure time limits to firefighters based on 

radioactive and chemical risks and the prevailing use of indirect attack tactics during suppression. 

 

3. Plans for the long-term reduction of wildfire hazard and fuel management (management of 

combustible materials) are needed. In the short term this includes the application of silvicultural and 

forest utilization methods using harvester / forwarder machines properly equipped with filters to avoid 

inhaling doses for operators. In addition, strategically placed and regularly maintained firebreaks and 

fuel breaks will reduce the risk of uncontrolled spread of wildfires. In the long term, a strategy needs to 

be developed for the management and treatment of harvested radioactive wood, including special 

incineration facilities for radioactive wood parts with associated nuclear waste solidification and long-

term storage capacities. Without such a long term strategy, it will be difficult to manage forests and 

reduce fire risks through the removal of dead wood. 

 

4. Fire service personnel in areas with nuclear or chemical contamination hazards should be properly 

trained and equipped to fight fires and understand these non-standard risks. A decision support 

system for fire suppression and air monitoring systems would allow the incident commander to 

control the exposure time of firefighters at the fire line from the point of view of compliance with 

individual radioactive and chemical safety norms. 

 

5. Firefighting on terrain contaminated by unexploded ordnance (UXO) and landmines require different 

means of PPE and equipment that ensure the protection of personnel again ballistic impacts of 

exploding ammunition. There are three options for suppressing wildfires on UXO- / land-mine 

contaminated terrain: 

� under weather conditions of low fire danger and intensity (e.g. during the winter and early 

spring),prevailing light fuels, and surface fires burning with low to moderate intensity on terrain 

contaminated by exercise and other small arms ammunition, the local incident manager may 
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decide to allow conventional approaches in fire control by creating fire lines and backburning at a 

safe distance. For fire suppression, aerial means could be involved. 

� in high-risk situations (high fire danger and intensity; expected explosions of high-impact UXO) 

ground personnel may be dispatched only if armored firefighting equipment and / or special 

ballistic PPE is available, or 

� remotely controlled or autonomously operating ground and aerial fire suppression means are used 

for fire suppression.  

 

6. For all types of contaminated terrain the early detection, monitoring and control of fires requires 

advanced solutions that would reduce the onsite operation and presence by humans. Remote sensing 

for the early detection of fires (ground-based automated and autonomously operating equipment for 

the rapid detection of vegetation fire smoke or heat) and unmanned, remotely controlled or 

autonomously operating ground vehicles or airborne systems (UAV/UAS) provide a significant 

reduction of health risks, injuries or fatalities to firefighters. The most advanced solutions for 

unmanned aerial and ground firefighting merit attention for use in practice.  
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Annex: 
 
Illustrations of Fire Problems and Fire Management Technologies on Terrain Contaminated by 
Radioactivity, Unexploded Ordnance (UXO) and Land Mines 
 
 
1) Examples of Explosive Remnants of War (ERW) / UXO and land mines with potential threats 
to firefighters and forestry personnel 
 

       
 
Figures 1.1 to 1.3. ERW / UXO warning sign in the South Caucasus (left). Unexploded grenade 
embedded in organic layer, hardly visible (middle). Unexploded bomb embedded in sandy soil, a few 
centimeters below the surface – a threat to vehicles maneuvering on the terrain (Brandenburg State, 
Germany). Photos: GFMC. 
 
 

   
 
Figures 1.4 to 1.5. Maps of former and active military training areas and shooting ranges in Germany 
(Source: Foundation David) and UXO waiting for disposal by EOD Team (Brandenburg State, former 
Military Training Range Jüterbog Ost. Photo: GFMC. 
 



 

   
 
Figures 1.6 and 1.7. Maps of land mine contamination in Croatia stemming from the armed conflict in the 
1990s. Source: Croatian Mine Action Center. 
 
 

      
 
Figures 1.8 to 1.10. Land mine contamination in Armenia. Source: Ministry of Emergency Situations, 
Armenia. 
 
 

   
 
Figures 1.11 and 1.12. UXO explosions on former Soviet military training range in Brandenburg State, 
Germany. Photos: Brandenburg State Forest Service. 
 



 
 

     
 
Figures 1.13 to 1.14. Unexploded grenades and bombs exposed after fire in Brandenburg State, East 
Germany (left and middle) and in the South Caucasus (Nagorno Karabakh) (right). Photos: GFMC. 
 
 
 
2) Examples of general personal protection equipment (PPE) for safe fighting vegetation fires 
and specialized armored PPE 
 

   
 
Figures 2.1 to 2.3. Protective vests, trousers and light firefighter helmets with glasses and smoke mask 
as used by the Global Fire Monitoring Center (GFMC) operations. Photos: GFMC. 
 
 

   
 
Figures 2.4 to 2.5. PPE in use by Global Fire Monitoring Center (GFMC) and partners in Germany and 
Brazil. Photos: GFMC. 



 

   
 
Figures 2.6 to 2.7. Protective ballistic vest, helmet and visor for protecting control and rescue teams on 
UXO- and mine-contaminated terrain as used by the Global Fire Monitoring Center (GFMC) operations. 
Photos: GFMC. 
 
 

     
 
Figures 2.8 to 2.10. Training in the use of the drip torch to set a prescribed fire for creating a “black buffer 
zone” without using hand tools digging and scraping, involving the risk of hitting UXO, land mines or 
releasing contaminated dust. Photos: GFMC. 
 
 

     
 
Figures 2.11 to 2.13. Training in the use of the drip torch to set a prescribed fire for creating a “black 
buffer zone” or to reduce flammable materials on the surface of the forests with high wildfire hazard. 
Boyarka Forest Research Station and Regional Eastern European Fire Monitoring Center, Kyiv, Ukraine. 
Photos: GFMC. 
 
 



 

     
 
Figures 2.14 to 2.16. Standard firefighting situation involving hand tools for suppressing surface fires of 
low to moderate intensity in Brazil (left) and Germany (middle and right). Photos: GFMC. 
 
 

     
 
Figures 2.17 to 2.18. Remotely controlled blade weeding machine designed to perform indirect forest 
fire attack by creating a fire line. This technology allows control personnel to stay outside of the impact 
zone of exploding ammunition or radioactive dust. Photos: Vallfirest. 
 
 

     
 
Figures 2.19 to 2.21. Use of the SPOT-55 firefighting tank, a converted T-55 with 11,000 l of fire 
suppressant (water, foam) operated by DiBuKa, Germany, to safely control prescribed fires or wildfires on 
UXO- and radioactivity-contaminated terrain. Photos: GFMC. 



 

   
 
Figures 2.22 to 2.23. Converted BMP-OT-R5 tank for use as armored ignition tank, equipped with the 
Pyroshot Green Dragon® for firing ignition devices to set prescribed or back fires. Photos: GFMC. 
 
 

   
 
Figures 2.24 to 2.25. Converted BMP-OT-R5 tank for use as armored ignition tank, equipped additionally 
with an ATV drip torch to set prescribed or back fires. Photos: GFMC. 
 
 

 
 
Figure 2.26. BMP-OT-R5 ignition tank setting a prescribed fire on UXO-contaminated terrain. Photo: 
GFMC. 
 



 

   
 
Figures 2.27 to 2.28. Unmanned aerial systems (UAV), including fixed-wing and helicopter drones or 
tethered balloons, are prerequisite for wildfire incident management or prescribed burning on 
contaminated terrain in Germany. Real-time transmission of aerial observations of the fire allow the 
incident manager to control the operation from safe distance and to direct the manned armored or 
unmanned ground vehicles to the fire site. Photos: GFMC. 
 
 

   
 
Figures 2.29 to 2.30. UAV-supported ground operations: The manned, armored ignition tank (blue) and 
the fire suppression tank (red-white) are directed via drone control. GFMC operations in Brandenburg 
State, Germany, on former military shooting ranges and WW-II combat theatres. Photos: GFMC. 
 
 

    
 
Figures 2.31 to 2.32. Lockheed Martin Corporation (U.S.A.) has successfully tested K-MAX unmanned 
helicopters at Griffiss International Airport, airlifting and dumping water onto a controlled fire on 6 
November 2014. Photos: Lockheed Martin Corporation. 



 

  
 
Figures 2.33 to 2.34. Aerial ignition of backfires or prescribed fires by manned or unmanned small 
helicopters using the Raindance® miniaturized aerial ignition system will allow safe unmanned operations 
over dangerous contaminated terrains. Photos: Rainbow Services. 
 
 

  
 
Figures 2.35 to 2.36. Aerial ignition pattern. Photos: Working on Fire International. 
 




